{"title":"早期遏制快速网络蠕虫恶意软件","authors":"M. Ahmad, Steve Woodhead, D. Gan","doi":"10.1109/NICS.2016.7725649","DOIUrl":null,"url":null,"abstract":"This paper presents a countermeasure mechanism for the propagation of fast network worm malware. The mechanism uses a cross layer architecture with a detection technique at the network layer to identify worm infection and a data-link containment solution to block an identified infected host. A software prototype of the mechanism has been used to demonstrate its effective. An empirical analysis of network worm propagation has been conducted to test the mechanism. The results show that the developed mechanism is effective in containing self-propagating malware with almost no false positives.","PeriodicalId":347057,"journal":{"name":"2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Early containment of fast network worm malware\",\"authors\":\"M. Ahmad, Steve Woodhead, D. Gan\",\"doi\":\"10.1109/NICS.2016.7725649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a countermeasure mechanism for the propagation of fast network worm malware. The mechanism uses a cross layer architecture with a detection technique at the network layer to identify worm infection and a data-link containment solution to block an identified infected host. A software prototype of the mechanism has been used to demonstrate its effective. An empirical analysis of network worm propagation has been conducted to test the mechanism. The results show that the developed mechanism is effective in containing self-propagating malware with almost no false positives.\",\"PeriodicalId\":347057,\"journal\":{\"name\":\"2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS.2016.7725649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS.2016.7725649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a countermeasure mechanism for the propagation of fast network worm malware. The mechanism uses a cross layer architecture with a detection technique at the network layer to identify worm infection and a data-link containment solution to block an identified infected host. A software prototype of the mechanism has been used to demonstrate its effective. An empirical analysis of network worm propagation has been conducted to test the mechanism. The results show that the developed mechanism is effective in containing self-propagating malware with almost no false positives.