C. Congdon, Charles Fizer, N. W. Smith, H. Gaskins, Joseph C. Aman, G. Nava, C. Mattingly
{"title":"GAMI的初步结果:一种基序推理的遗传算法","authors":"C. Congdon, Charles Fizer, N. W. Smith, H. Gaskins, Joseph C. Aman, G. Nava, C. Mattingly","doi":"10.1109/CIBCB.2005.1594904","DOIUrl":null,"url":null,"abstract":"We have developed GAMI, an approach to motif inference that uses a genetic algorithms search and is designed specifically to work with divergent species and possibly long nucleotide sequences. The system design reduces the size of the search space as compared to typical window-location approaches for motif inference. This paper describes the motivation and system design for GAMI, discusses how we have designed the search space and compares this to the search space of other approaches, and presents initial results with data from the literature and from novel tasks. GAMI is able to find a host of putative conserved patterns; possible approaches for validating the utility of the conserved regions are discussed.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Preliminary Results for GAMI: A Genetic Algorithms Approach to Motif Inference\",\"authors\":\"C. Congdon, Charles Fizer, N. W. Smith, H. Gaskins, Joseph C. Aman, G. Nava, C. Mattingly\",\"doi\":\"10.1109/CIBCB.2005.1594904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed GAMI, an approach to motif inference that uses a genetic algorithms search and is designed specifically to work with divergent species and possibly long nucleotide sequences. The system design reduces the size of the search space as compared to typical window-location approaches for motif inference. This paper describes the motivation and system design for GAMI, discusses how we have designed the search space and compares this to the search space of other approaches, and presents initial results with data from the literature and from novel tasks. GAMI is able to find a host of putative conserved patterns; possible approaches for validating the utility of the conserved regions are discussed.\",\"PeriodicalId\":330810,\"journal\":{\"name\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2005.1594904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preliminary Results for GAMI: A Genetic Algorithms Approach to Motif Inference
We have developed GAMI, an approach to motif inference that uses a genetic algorithms search and is designed specifically to work with divergent species and possibly long nucleotide sequences. The system design reduces the size of the search space as compared to typical window-location approaches for motif inference. This paper describes the motivation and system design for GAMI, discusses how we have designed the search space and compares this to the search space of other approaches, and presents initial results with data from the literature and from novel tasks. GAMI is able to find a host of putative conserved patterns; possible approaches for validating the utility of the conserved regions are discussed.