GAMI的初步结果:一种基序推理的遗传算法

C. Congdon, Charles Fizer, N. W. Smith, H. Gaskins, Joseph C. Aman, G. Nava, C. Mattingly
{"title":"GAMI的初步结果:一种基序推理的遗传算法","authors":"C. Congdon, Charles Fizer, N. W. Smith, H. Gaskins, Joseph C. Aman, G. Nava, C. Mattingly","doi":"10.1109/CIBCB.2005.1594904","DOIUrl":null,"url":null,"abstract":"We have developed GAMI, an approach to motif inference that uses a genetic algorithms search and is designed specifically to work with divergent species and possibly long nucleotide sequences. The system design reduces the size of the search space as compared to typical window-location approaches for motif inference. This paper describes the motivation and system design for GAMI, discusses how we have designed the search space and compares this to the search space of other approaches, and presents initial results with data from the literature and from novel tasks. GAMI is able to find a host of putative conserved patterns; possible approaches for validating the utility of the conserved regions are discussed.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Preliminary Results for GAMI: A Genetic Algorithms Approach to Motif Inference\",\"authors\":\"C. Congdon, Charles Fizer, N. W. Smith, H. Gaskins, Joseph C. Aman, G. Nava, C. Mattingly\",\"doi\":\"10.1109/CIBCB.2005.1594904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed GAMI, an approach to motif inference that uses a genetic algorithms search and is designed specifically to work with divergent species and possibly long nucleotide sequences. The system design reduces the size of the search space as compared to typical window-location approaches for motif inference. This paper describes the motivation and system design for GAMI, discusses how we have designed the search space and compares this to the search space of other approaches, and presents initial results with data from the literature and from novel tasks. GAMI is able to find a host of putative conserved patterns; possible approaches for validating the utility of the conserved regions are discussed.\",\"PeriodicalId\":330810,\"journal\":{\"name\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2005.1594904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

我们开发了GAMI,这是一种使用遗传算法搜索的基序推断方法,专门用于处理不同的物种和可能的长核苷酸序列。与典型的窗口定位基序推理方法相比,该系统设计减少了搜索空间的大小。本文描述了GAMI的动机和系统设计,讨论了我们如何设计搜索空间,并将其与其他方法的搜索空间进行了比较,并通过文献和新任务的数据给出了初步结果。GAMI能够找到许多假定的保守模式;讨论了验证保守区域效用的可能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preliminary Results for GAMI: A Genetic Algorithms Approach to Motif Inference
We have developed GAMI, an approach to motif inference that uses a genetic algorithms search and is designed specifically to work with divergent species and possibly long nucleotide sequences. The system design reduces the size of the search space as compared to typical window-location approaches for motif inference. This paper describes the motivation and system design for GAMI, discusses how we have designed the search space and compares this to the search space of other approaches, and presents initial results with data from the literature and from novel tasks. GAMI is able to find a host of putative conserved patterns; possible approaches for validating the utility of the conserved regions are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信