用线性代数卷积超erlang与超指数分布

Clemens Neumüller, J. Robert, A. Heuberger
{"title":"用线性代数卷积超erlang与超指数分布","authors":"Clemens Neumüller, J. Robert, A. Heuberger","doi":"10.1145/3545839.3545840","DOIUrl":null,"url":null,"abstract":"In this paper, the sum of a hyper-Erlang and a hyper-exponential distributed random variables is analyzed. Although tedious, the resulting random variable’s probability density function (PDF) can be obtained through convolution of its summands’ PDFs. Alternatively, the resulting distribution can be stated directly in terms of a phase-type distribution. However, computing its PDF can still be very costly and this representation gives little insight on the distribution. It can be shown that the sum of both random variable is again hyper-Erlang distributed of incremented order and can therefore be described without requiring the matrix exponential function. We derive a closed form linear algebra expression for the probability weights of the sum’s hyper-Erlang distribution, which significantly reduces the computational complexity of evaluating its distribution.","PeriodicalId":249161,"journal":{"name":"Proceedings of the 2022 5th International Conference on Mathematics and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convolving Hyper-Erlang with Hyper-Exponential Distributions Using Linear Algebra\",\"authors\":\"Clemens Neumüller, J. Robert, A. Heuberger\",\"doi\":\"10.1145/3545839.3545840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the sum of a hyper-Erlang and a hyper-exponential distributed random variables is analyzed. Although tedious, the resulting random variable’s probability density function (PDF) can be obtained through convolution of its summands’ PDFs. Alternatively, the resulting distribution can be stated directly in terms of a phase-type distribution. However, computing its PDF can still be very costly and this representation gives little insight on the distribution. It can be shown that the sum of both random variable is again hyper-Erlang distributed of incremented order and can therefore be described without requiring the matrix exponential function. We derive a closed form linear algebra expression for the probability weights of the sum’s hyper-Erlang distribution, which significantly reduces the computational complexity of evaluating its distribution.\",\"PeriodicalId\":249161,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Mathematics and Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3545839.3545840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545839.3545840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文分析了超erlang和超指数分布随机变量的和。随机变量的概率密度函数(PDF)虽然繁琐,但可以通过对其和项的PDF进行卷积得到。或者,得到的分布可以直接用相型分布来表示。然而,计算它的PDF仍然是非常昂贵的,并且这种表示对分布没有什么深入的了解。可以证明,这两个随机变量的和又是增量阶的超厄朗分布,因此可以不需要矩阵指数函数来描述。我们对和的超erlang分布的概率权导出了一个封闭形式的线性代数表达式,大大降低了计算其分布的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolving Hyper-Erlang with Hyper-Exponential Distributions Using Linear Algebra
In this paper, the sum of a hyper-Erlang and a hyper-exponential distributed random variables is analyzed. Although tedious, the resulting random variable’s probability density function (PDF) can be obtained through convolution of its summands’ PDFs. Alternatively, the resulting distribution can be stated directly in terms of a phase-type distribution. However, computing its PDF can still be very costly and this representation gives little insight on the distribution. It can be shown that the sum of both random variable is again hyper-Erlang distributed of incremented order and can therefore be described without requiring the matrix exponential function. We derive a closed form linear algebra expression for the probability weights of the sum’s hyper-Erlang distribution, which significantly reduces the computational complexity of evaluating its distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信