并网双馈感应发电机同步与电流控制的滑移角计算算法

Thanapon Wongyai, Y. Kumsuwan
{"title":"并网双馈感应发电机同步与电流控制的滑移角计算算法","authors":"Thanapon Wongyai, Y. Kumsuwan","doi":"10.1109/SPIES48661.2020.9243066","DOIUrl":null,"url":null,"abstract":"In this paper, the computation of a slip position is introduced for the grid-flux oriented control of a grid-connected doubly fed induction generator. For the DC excitation process in the rotor-side converter, the stator voltage is built at the stator terminals, which is related to the shaft speed and magnetizing current. Therefore, the corrected rotor electrical and slip angular speeds are received. Again, for the AC excitation process, the condition of the synchronizing is proposed by checking the slip position between estimated and real slip angles. If it is matching at the zero angles, the DC excitation is changed to the AC excitation with the real slip angle; in addition, the induced stator voltage and frequency are completely synchronized with the utility grid. For the grid-connected operation, the dq-axes rotor currents are also proposed to regulate the grid-flux and to control the electromagnetic torque. To assess the performance of the proposed control algorithm, computer modeling is developed, the simulation results are provided.","PeriodicalId":244426,"journal":{"name":"2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Slip Angle Computation Algorithm for Synchronization and Current Control of a Grid-Connected Doubly-Fed Induction Generator\",\"authors\":\"Thanapon Wongyai, Y. Kumsuwan\",\"doi\":\"10.1109/SPIES48661.2020.9243066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the computation of a slip position is introduced for the grid-flux oriented control of a grid-connected doubly fed induction generator. For the DC excitation process in the rotor-side converter, the stator voltage is built at the stator terminals, which is related to the shaft speed and magnetizing current. Therefore, the corrected rotor electrical and slip angular speeds are received. Again, for the AC excitation process, the condition of the synchronizing is proposed by checking the slip position between estimated and real slip angles. If it is matching at the zero angles, the DC excitation is changed to the AC excitation with the real slip angle; in addition, the induced stator voltage and frequency are completely synchronized with the utility grid. For the grid-connected operation, the dq-axes rotor currents are also proposed to regulate the grid-flux and to control the electromagnetic torque. To assess the performance of the proposed control algorithm, computer modeling is developed, the simulation results are provided.\",\"PeriodicalId\":244426,\"journal\":{\"name\":\"2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIES48661.2020.9243066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIES48661.2020.9243066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了并网双馈感应发电机面向电网磁链控制的滑移位置计算方法。对于转子侧变换器的直流励磁过程,定子电压建立在定子两端,它与轴转速和磁化电流有关。因此,得到了修正后的转子电角速度和滑移角速度。再次,对于交流励磁过程,通过检查估计滑移角与实际滑移角之间的滑移位置,提出了同步的条件。如果在零角处匹配,则将直流励磁改为具有实际滑移角的交流励磁;此外,感应定子电压和频率与电网完全同步。并网运行时,还提出了dq轴转子电流来调节电网磁通和控制电磁转矩。为了评估所提出的控制算法的性能,建立了计算机模型,并给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Slip Angle Computation Algorithm for Synchronization and Current Control of a Grid-Connected Doubly-Fed Induction Generator
In this paper, the computation of a slip position is introduced for the grid-flux oriented control of a grid-connected doubly fed induction generator. For the DC excitation process in the rotor-side converter, the stator voltage is built at the stator terminals, which is related to the shaft speed and magnetizing current. Therefore, the corrected rotor electrical and slip angular speeds are received. Again, for the AC excitation process, the condition of the synchronizing is proposed by checking the slip position between estimated and real slip angles. If it is matching at the zero angles, the DC excitation is changed to the AC excitation with the real slip angle; in addition, the induced stator voltage and frequency are completely synchronized with the utility grid. For the grid-connected operation, the dq-axes rotor currents are also proposed to regulate the grid-flux and to control the electromagnetic torque. To assess the performance of the proposed control algorithm, computer modeling is developed, the simulation results are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信