{"title":"用于城市和公路车辆自组织网络(vanet)的延迟容忍和预测数据分发协议(DTP-DDP)","authors":"Tomo Nikolovski, R. Pazzi","doi":"10.1145/2989275.2989280","DOIUrl":null,"url":null,"abstract":"Vehicular Ad hoc Networks (VANETs) enable inter-vehicul-\\newline ar data exchange that has a great potential to help resolving numerous issues on our roads, such as the dissemination of emergency information, traffic condition, infotainment data and other delay tolerant data. While disseminating data within a certain area of interest, the Flooding scheme provides the best delivery ratio, but it suffers from the well-known \\textit{broadcast storm} problem. To this end, we propose a protocol that takes advantage of the Global Positioning System (GPS) with integrated maps. Using the data from a map together with its predictive mechanism, the data sender elects the further nodes that will rebroadcast the information. In addition, the protocol works in both urban and highway scenarios. However, it requires one-time snapshot of the one-hop vehicles, but there are no other beacon messages. Once it has the snapshot, the sender chooses the further rebroadcasting vehicle. A low signal handling mechanism was developed to handle the cases in which the reply-response messages cannot be delivered. A set of simulation experiments was conducted and results show that the proposed scheme alleviates the \\textit{broadcast storm} problem while keeping delivery ratio on a par with the Flooding scheme by sacrificing some delay performance.","PeriodicalId":113404,"journal":{"name":"Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Delay Tolerant and Predictive Data Dissemination Protocol (DTP-DDP) for urban and highway vehicular ad hoc networks (VANETs)\",\"authors\":\"Tomo Nikolovski, R. Pazzi\",\"doi\":\"10.1145/2989275.2989280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicular Ad hoc Networks (VANETs) enable inter-vehicul-\\\\newline ar data exchange that has a great potential to help resolving numerous issues on our roads, such as the dissemination of emergency information, traffic condition, infotainment data and other delay tolerant data. While disseminating data within a certain area of interest, the Flooding scheme provides the best delivery ratio, but it suffers from the well-known \\\\textit{broadcast storm} problem. To this end, we propose a protocol that takes advantage of the Global Positioning System (GPS) with integrated maps. Using the data from a map together with its predictive mechanism, the data sender elects the further nodes that will rebroadcast the information. In addition, the protocol works in both urban and highway scenarios. However, it requires one-time snapshot of the one-hop vehicles, but there are no other beacon messages. Once it has the snapshot, the sender chooses the further rebroadcasting vehicle. A low signal handling mechanism was developed to handle the cases in which the reply-response messages cannot be delivered. A set of simulation experiments was conducted and results show that the proposed scheme alleviates the \\\\textit{broadcast storm} problem while keeping delivery ratio on a par with the Flooding scheme by sacrificing some delay performance.\",\"PeriodicalId\":113404,\"journal\":{\"name\":\"Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2989275.2989280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2989275.2989280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Delay Tolerant and Predictive Data Dissemination Protocol (DTP-DDP) for urban and highway vehicular ad hoc networks (VANETs)
Vehicular Ad hoc Networks (VANETs) enable inter-vehicul-\newline ar data exchange that has a great potential to help resolving numerous issues on our roads, such as the dissemination of emergency information, traffic condition, infotainment data and other delay tolerant data. While disseminating data within a certain area of interest, the Flooding scheme provides the best delivery ratio, but it suffers from the well-known \textit{broadcast storm} problem. To this end, we propose a protocol that takes advantage of the Global Positioning System (GPS) with integrated maps. Using the data from a map together with its predictive mechanism, the data sender elects the further nodes that will rebroadcast the information. In addition, the protocol works in both urban and highway scenarios. However, it requires one-time snapshot of the one-hop vehicles, but there are no other beacon messages. Once it has the snapshot, the sender chooses the further rebroadcasting vehicle. A low signal handling mechanism was developed to handle the cases in which the reply-response messages cannot be delivered. A set of simulation experiments was conducted and results show that the proposed scheme alleviates the \textit{broadcast storm} problem while keeping delivery ratio on a par with the Flooding scheme by sacrificing some delay performance.