基于非线性惯性权值和正弦余弦算法的蜘蛛猴优化算法的频谱分配

Dexin Yin, Damin Zhang
{"title":"基于非线性惯性权值和正弦余弦算法的蜘蛛猴优化算法的频谱分配","authors":"Dexin Yin, Damin Zhang","doi":"10.1109/ICCC51575.2020.9345294","DOIUrl":null,"url":null,"abstract":"To improve spectrum allocation optimization and optimal convergence accuracy in cognitive radio, a nonlinear spider monkey algorithm based on sine-cosine Algorithm (SCNWSMO) is proposed. In the decision-making stages of global leader and the local leader, the spider monkey individuals are optimized by sine-cosine Algorithm. Moreover, the nonlinear decreasing inertia weight factor is introduced to effectively control the global optimization and local optimization capabilities of the algorithm and improve the convergence speed. Finally, the performance of SCNWSMO is compared with various algorithms total system benefit, and average network benefit. Simulation results show that the SCNWSMO is advantageous over other algorithms with higher network efficiency.","PeriodicalId":386048,"journal":{"name":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrum Allocation Based on Spider Monkey Optimization Algorithm with Nonlinear Inertia Weight and Sine-Cosine Algorithm\",\"authors\":\"Dexin Yin, Damin Zhang\",\"doi\":\"10.1109/ICCC51575.2020.9345294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve spectrum allocation optimization and optimal convergence accuracy in cognitive radio, a nonlinear spider monkey algorithm based on sine-cosine Algorithm (SCNWSMO) is proposed. In the decision-making stages of global leader and the local leader, the spider monkey individuals are optimized by sine-cosine Algorithm. Moreover, the nonlinear decreasing inertia weight factor is introduced to effectively control the global optimization and local optimization capabilities of the algorithm and improve the convergence speed. Finally, the performance of SCNWSMO is compared with various algorithms total system benefit, and average network benefit. Simulation results show that the SCNWSMO is advantageous over other algorithms with higher network efficiency.\",\"PeriodicalId\":386048,\"journal\":{\"name\":\"2020 IEEE 6th International Conference on Computer and Communications (ICCC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 6th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC51575.2020.9345294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC51575.2020.9345294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高认知无线电频谱分配优化和最优收敛精度,提出了一种基于正弦余弦算法(SCNWSMO)的非线性蜘蛛猴算法。在全局领导者和局部领导者决策阶段,采用正弦余弦算法对蜘蛛猴个体进行优化。同时,引入非线性减小惯性权重因子,有效地控制了算法的全局寻优和局部寻优能力,提高了算法的收敛速度。最后,将SCNWSMO的性能与各种算法的总系统效益和平均网络效益进行了比较。仿真结果表明,SCNWSMO算法优于其他算法,具有较高的网络效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectrum Allocation Based on Spider Monkey Optimization Algorithm with Nonlinear Inertia Weight and Sine-Cosine Algorithm
To improve spectrum allocation optimization and optimal convergence accuracy in cognitive radio, a nonlinear spider monkey algorithm based on sine-cosine Algorithm (SCNWSMO) is proposed. In the decision-making stages of global leader and the local leader, the spider monkey individuals are optimized by sine-cosine Algorithm. Moreover, the nonlinear decreasing inertia weight factor is introduced to effectively control the global optimization and local optimization capabilities of the algorithm and improve the convergence speed. Finally, the performance of SCNWSMO is compared with various algorithms total system benefit, and average network benefit. Simulation results show that the SCNWSMO is advantageous over other algorithms with higher network efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信