改进Gleason分级泛化性能的不同增强技术的比较

I. Arvidsson, N. Overgaard, K. Åström, A. Heyden
{"title":"改进Gleason分级泛化性能的不同增强技术的比较","authors":"I. Arvidsson, N. Overgaard, K. Åström, A. Heyden","doi":"10.1109/ISBI.2019.8759264","DOIUrl":null,"url":null,"abstract":"The fact that deep learning based algorithms used for digital pathology tend to overfit to the site of the training data is well-known. Since an algorithm that does not generalize is not very useful, we have in this work studied how different data augmentation techniques can reduce this problem but also how data from different sites can be normalized to each other. For both of these approaches we have used cycle generative adversarial networks (GAN); either to generate more examples to train on or to transform images from one site to another. Furthermore, we have investigated to what extent standard augmentation techniques improve the generalization performance. We performed experiments on four datasets with slides from prostate biopsies, stained with H&E, detailed annotated with Gleason grades. We obtained results similar to previous studies, with accuracies of 77% for Gleason grading for images from the same site as the training data and 59% for images from other sites. However, we also found out that the use of traditional augmentation techniques gave better performance compared to when using cycle GANs, either to augment the training data or to normalize the test data.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparison of Different Augmentation Techniques for Improved Generalization Performance for Gleason Grading\",\"authors\":\"I. Arvidsson, N. Overgaard, K. Åström, A. Heyden\",\"doi\":\"10.1109/ISBI.2019.8759264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fact that deep learning based algorithms used for digital pathology tend to overfit to the site of the training data is well-known. Since an algorithm that does not generalize is not very useful, we have in this work studied how different data augmentation techniques can reduce this problem but also how data from different sites can be normalized to each other. For both of these approaches we have used cycle generative adversarial networks (GAN); either to generate more examples to train on or to transform images from one site to another. Furthermore, we have investigated to what extent standard augmentation techniques improve the generalization performance. We performed experiments on four datasets with slides from prostate biopsies, stained with H&E, detailed annotated with Gleason grades. We obtained results similar to previous studies, with accuracies of 77% for Gleason grading for images from the same site as the training data and 59% for images from other sites. However, we also found out that the use of traditional augmentation techniques gave better performance compared to when using cycle GANs, either to augment the training data or to normalize the test data.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

众所周知,用于数字病理学的基于深度学习的算法倾向于过度拟合训练数据的位置。由于没有泛化的算法不是很有用,我们在这项工作中研究了不同的数据增强技术如何减少这个问题,以及如何将来自不同站点的数据相互规范化。对于这两种方法,我们都使用了循环生成对抗网络(GAN);要么生成更多的例子进行训练,要么将图像从一个站点转换到另一个站点。此外,我们还研究了标准增强技术在多大程度上提高了泛化性能。我们在四个数据集上进行了实验,这些数据集来自前列腺活检切片,H&E染色,并详细注释了Gleason分级。我们得到的结果与之前的研究相似,对于与训练数据相同站点的图像,Gleason分级的准确率为77%,对于来自其他站点的图像,准确率为59%。然而,我们也发现,与使用循环gan相比,使用传统的增强技术在增强训练数据或规范化测试数据方面具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Different Augmentation Techniques for Improved Generalization Performance for Gleason Grading
The fact that deep learning based algorithms used for digital pathology tend to overfit to the site of the training data is well-known. Since an algorithm that does not generalize is not very useful, we have in this work studied how different data augmentation techniques can reduce this problem but also how data from different sites can be normalized to each other. For both of these approaches we have used cycle generative adversarial networks (GAN); either to generate more examples to train on or to transform images from one site to another. Furthermore, we have investigated to what extent standard augmentation techniques improve the generalization performance. We performed experiments on four datasets with slides from prostate biopsies, stained with H&E, detailed annotated with Gleason grades. We obtained results similar to previous studies, with accuracies of 77% for Gleason grading for images from the same site as the training data and 59% for images from other sites. However, we also found out that the use of traditional augmentation techniques gave better performance compared to when using cycle GANs, either to augment the training data or to normalize the test data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信