从脑磁图信号中解码基于时频表示的脑电波

B. Priya, S. Jayalakshmy
{"title":"从脑磁图信号中解码基于时频表示的脑电波","authors":"B. Priya, S. Jayalakshmy","doi":"10.1109/ICDDS56399.2022.10037355","DOIUrl":null,"url":null,"abstract":"Understanding the concurrent activity of human brain is a highly crucial task in most of the brain computer interface (BCI) applications. This study exploited the potential of empirical wavelet transform and the different time frequency visualizations for interpretating the brain functionality for external visual stimuli from magnetoencephalography signals. The study examined the four types of visualizations: spectrogram, scalogram, constant Q Gabor spectrogram and Fourier synchro squeezed representation. The proficiency of the aforementioned representations of the empirical wavelet transform (EWT) decomposed modes were assessed using GoogLeNet, a prominent transfer learning architecture. The experimental results serve as an evident that mode 3 of EWT is a dominant mode and that combined with scalogram results in a promising performance with a classification accuracy of 80.79% in decoding the human brain for visual stimuli.","PeriodicalId":344311,"journal":{"name":"2022 IEEE 1st International Conference on Data, Decision and Systems (ICDDS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNN - Time Frequency Representation Based Brain Wave Decoding from Magnetoencephalography Signals\",\"authors\":\"B. Priya, S. Jayalakshmy\",\"doi\":\"10.1109/ICDDS56399.2022.10037355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the concurrent activity of human brain is a highly crucial task in most of the brain computer interface (BCI) applications. This study exploited the potential of empirical wavelet transform and the different time frequency visualizations for interpretating the brain functionality for external visual stimuli from magnetoencephalography signals. The study examined the four types of visualizations: spectrogram, scalogram, constant Q Gabor spectrogram and Fourier synchro squeezed representation. The proficiency of the aforementioned representations of the empirical wavelet transform (EWT) decomposed modes were assessed using GoogLeNet, a prominent transfer learning architecture. The experimental results serve as an evident that mode 3 of EWT is a dominant mode and that combined with scalogram results in a promising performance with a classification accuracy of 80.79% in decoding the human brain for visual stimuli.\",\"PeriodicalId\":344311,\"journal\":{\"name\":\"2022 IEEE 1st International Conference on Data, Decision and Systems (ICDDS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 1st International Conference on Data, Decision and Systems (ICDDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDDS56399.2022.10037355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 1st International Conference on Data, Decision and Systems (ICDDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDDS56399.2022.10037355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大多数脑机接口(BCI)应用中,了解人脑的并发活动是一项至关重要的任务。本研究利用经验小波变换和不同时频可视化的方法来解释脑磁图信号在外部视觉刺激下的脑功能。该研究检查了四种类型的可视化:谱图、尺度图、恒定Q Gabor谱图和傅立叶同步压缩表示。使用GoogLeNet(一种著名的迁移学习架构)评估上述经验小波变换(EWT)分解模式表示的熟练程度。实验结果表明,EWT模式3是一种优势模式,结合尺度图对人脑视觉刺激进行解码,分类准确率达到80.79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN - Time Frequency Representation Based Brain Wave Decoding from Magnetoencephalography Signals
Understanding the concurrent activity of human brain is a highly crucial task in most of the brain computer interface (BCI) applications. This study exploited the potential of empirical wavelet transform and the different time frequency visualizations for interpretating the brain functionality for external visual stimuli from magnetoencephalography signals. The study examined the four types of visualizations: spectrogram, scalogram, constant Q Gabor spectrogram and Fourier synchro squeezed representation. The proficiency of the aforementioned representations of the empirical wavelet transform (EWT) decomposed modes were assessed using GoogLeNet, a prominent transfer learning architecture. The experimental results serve as an evident that mode 3 of EWT is a dominant mode and that combined with scalogram results in a promising performance with a classification accuracy of 80.79% in decoding the human brain for visual stimuli.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信