基于粒子群优化模型的人工神经网络水位预测

Pornnapa Panyadee, P. Champrasert, Chuchoke Aryupong
{"title":"基于粒子群优化模型的人工神经网络水位预测","authors":"Pornnapa Panyadee, P. Champrasert, Chuchoke Aryupong","doi":"10.1109/ICOICT.2017.8074670","DOIUrl":null,"url":null,"abstract":"Flash flood is a natural disaster that causes great losses. It happens mostly in rural areas when heavy rainfall is gathered into the main river in watershed areas. Lots of water comes into the river. This causes a great volume of water flows down to the downstream river area. The water level at the downstream river should be predicted to issue the warning messages to the villagers in the floodplains before the flood arrival. Thus, a flash flood early warning system is a solution to reduce damage from flash floods. Although the artificial neural network (ANN) can be applied as the prediction model, the accuracy of the prediction results depends on the parameter values (e.g., the number of previous data, the period of previous data). This paper proposes to apply the particle swarm optimization technique to tune up the parameter values in the ANN. The proposed model, called W-POpt model, consists of two components, which are 1) PSO is applied as optimizer to search for the optimal parameter values for the ANN training process, and 2) ANN is applied to find the predicted water level. The evaluation results show that PSO yields the optimal parameter values. Applying PSO can reduce the training process time in ANN. The predicted water level from the W-POpt model is acceptable for applying in flash flood early warning systems.","PeriodicalId":244500,"journal":{"name":"2017 5th International Conference on Information and Communication Technology (ICoIC7)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Water level prediction using artificial neural network with particle swarm optimization model\",\"authors\":\"Pornnapa Panyadee, P. Champrasert, Chuchoke Aryupong\",\"doi\":\"10.1109/ICOICT.2017.8074670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flash flood is a natural disaster that causes great losses. It happens mostly in rural areas when heavy rainfall is gathered into the main river in watershed areas. Lots of water comes into the river. This causes a great volume of water flows down to the downstream river area. The water level at the downstream river should be predicted to issue the warning messages to the villagers in the floodplains before the flood arrival. Thus, a flash flood early warning system is a solution to reduce damage from flash floods. Although the artificial neural network (ANN) can be applied as the prediction model, the accuracy of the prediction results depends on the parameter values (e.g., the number of previous data, the period of previous data). This paper proposes to apply the particle swarm optimization technique to tune up the parameter values in the ANN. The proposed model, called W-POpt model, consists of two components, which are 1) PSO is applied as optimizer to search for the optimal parameter values for the ANN training process, and 2) ANN is applied to find the predicted water level. The evaluation results show that PSO yields the optimal parameter values. Applying PSO can reduce the training process time in ANN. The predicted water level from the W-POpt model is acceptable for applying in flash flood early warning systems.\",\"PeriodicalId\":244500,\"journal\":{\"name\":\"2017 5th International Conference on Information and Communication Technology (ICoIC7)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Conference on Information and Communication Technology (ICoIC7)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOICT.2017.8074670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Information and Communication Technology (ICoIC7)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOICT.2017.8074670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

山洪是一种造成巨大损失的自然灾害。它主要发生在农村地区,当暴雨聚集到分水岭地区的主要河流时。大量的水流入河里。这导致大量的水流向下游的河流地区。预测下游水位,在洪水到来之前向洪泛区的村民发出预警信息。因此,山洪预警系统是减少山洪灾害的一种解决方案。虽然可以使用人工神经网络(ANN)作为预测模型,但预测结果的准确性取决于参数值(例如,以前数据的数量,以前数据的周期)。本文提出应用粒子群优化技术对人工神经网络中的参数值进行调整。该模型称为W-POpt模型,由两个部分组成:1)将粒子群算法作为优化器,用于搜索人工神经网络训练过程的最优参数值;2)将人工神经网络用于寻找预测水位。评价结果表明,粒子群算法能得到最优的参数值。在人工神经网络中应用粒子群算法可以减少训练过程的时间。W-POpt模型预测的水位可用于山洪预警系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water level prediction using artificial neural network with particle swarm optimization model
Flash flood is a natural disaster that causes great losses. It happens mostly in rural areas when heavy rainfall is gathered into the main river in watershed areas. Lots of water comes into the river. This causes a great volume of water flows down to the downstream river area. The water level at the downstream river should be predicted to issue the warning messages to the villagers in the floodplains before the flood arrival. Thus, a flash flood early warning system is a solution to reduce damage from flash floods. Although the artificial neural network (ANN) can be applied as the prediction model, the accuracy of the prediction results depends on the parameter values (e.g., the number of previous data, the period of previous data). This paper proposes to apply the particle swarm optimization technique to tune up the parameter values in the ANN. The proposed model, called W-POpt model, consists of two components, which are 1) PSO is applied as optimizer to search for the optimal parameter values for the ANN training process, and 2) ANN is applied to find the predicted water level. The evaluation results show that PSO yields the optimal parameter values. Applying PSO can reduce the training process time in ANN. The predicted water level from the W-POpt model is acceptable for applying in flash flood early warning systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信