基于波段选择的高效高光谱解混

Yang Zhou, Xiaorun Li, Jiantao Cui
{"title":"基于波段选择的高效高光谱解混","authors":"Yang Zhou, Xiaorun Li, Jiantao Cui","doi":"10.1109/GCIS.2012.39","DOIUrl":null,"url":null,"abstract":"Hyper spectral unmixing (HU) is important for ground objects identification. Due to the mass data hyper spectral sensors bring, band selection plays an important role in boosting efficiency of HU. This paper proposes a high-efficiency approach of HU that carries out two modified algorithms of band selection followed by nonnegative matrix factorization (NMF), which are linear prediction (LP) combined with K-L divergence and mutual information (MI). Experiment results based on simulated data and real hyper spectral imagery demonstrate that the proposed scheme is more efficient than initial NMF in HU.","PeriodicalId":337629,"journal":{"name":"2012 Third Global Congress on Intelligent Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Efficiency Hyperspectral Unmixing Based on Band Selection\",\"authors\":\"Yang Zhou, Xiaorun Li, Jiantao Cui\",\"doi\":\"10.1109/GCIS.2012.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyper spectral unmixing (HU) is important for ground objects identification. Due to the mass data hyper spectral sensors bring, band selection plays an important role in boosting efficiency of HU. This paper proposes a high-efficiency approach of HU that carries out two modified algorithms of band selection followed by nonnegative matrix factorization (NMF), which are linear prediction (LP) combined with K-L divergence and mutual information (MI). Experiment results based on simulated data and real hyper spectral imagery demonstrate that the proposed scheme is more efficient than initial NMF in HU.\",\"PeriodicalId\":337629,\"journal\":{\"name\":\"2012 Third Global Congress on Intelligent Systems\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third Global Congress on Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCIS.2012.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2012.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱分解是地物识别的重要手段。由于高光谱传感器带来的海量数据,波段选择对提高高光谱传感器的效率起着重要的作用。本文提出了一种高效的HU方法,该方法实现了两种改进的带选择和非负矩阵分解算法,即结合K-L散度和互信息的线性预测(LP)算法。基于仿真数据和真实高光谱图像的实验结果表明,该方案比初始NMF在HU中的效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Efficiency Hyperspectral Unmixing Based on Band Selection
Hyper spectral unmixing (HU) is important for ground objects identification. Due to the mass data hyper spectral sensors bring, band selection plays an important role in boosting efficiency of HU. This paper proposes a high-efficiency approach of HU that carries out two modified algorithms of band selection followed by nonnegative matrix factorization (NMF), which are linear prediction (LP) combined with K-L divergence and mutual information (MI). Experiment results based on simulated data and real hyper spectral imagery demonstrate that the proposed scheme is more efficient than initial NMF in HU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信