LMI和Riccati方程的解析中心

Y. Genin, Y. Nesterov, P. Dooren
{"title":"LMI和Riccati方程的解析中心","authors":"Y. Genin, Y. Nesterov, P. Dooren","doi":"10.23919/ECC.1999.7099868","DOIUrl":null,"url":null,"abstract":"In this paper we derive formulas for constructing the analytic center of the linear matrix inequality defining a positive (para-hermitian) transfer function. The Riccati equations that are usually associated with such positive transfer functions, are related to boundary points of the convex set. In this paper we show that the analytic center is also described by a closely related equation, and we analyze its spectral properties.","PeriodicalId":117668,"journal":{"name":"1999 European Control Conference (ECC)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The analytic center of LMI's and Riccati equations\",\"authors\":\"Y. Genin, Y. Nesterov, P. Dooren\",\"doi\":\"10.23919/ECC.1999.7099868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we derive formulas for constructing the analytic center of the linear matrix inequality defining a positive (para-hermitian) transfer function. The Riccati equations that are usually associated with such positive transfer functions, are related to boundary points of the convex set. In this paper we show that the analytic center is also described by a closely related equation, and we analyze its spectral properties.\",\"PeriodicalId\":117668,\"journal\":{\"name\":\"1999 European Control Conference (ECC)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.1999.7099868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.1999.7099868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文导出了定义一个正传递函数的线性矩阵不等式解析中心的构造公式。通常与正传递函数相关的里卡蒂方程与凸集的边界点有关。本文证明了解析中心也可以用一个密切相关的方程来描述,并分析了它的光谱性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The analytic center of LMI's and Riccati equations
In this paper we derive formulas for constructing the analytic center of the linear matrix inequality defining a positive (para-hermitian) transfer function. The Riccati equations that are usually associated with such positive transfer functions, are related to boundary points of the convex set. In this paper we show that the analytic center is also described by a closely related equation, and we analyze its spectral properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信