{"title":"基于脑电图的情感计算在智能辅导系统中的难度预测","authors":"Fehaid Alqahtani, Stamos Katsigiannis, N. Ramzan","doi":"10.1109/UCET.2019.8881872","DOIUrl":null,"url":null,"abstract":"Intelligent tutoring Systems (ITS) have emerged as an attractive solution for providing personalised learning experiences on a large scale. Traditional ITS are able to adapt the learning process according to the capabilities and needs of their users, but lack the capability to adapt to their affective/emotional state. In this work, we examine the use of electrocardiography (ECG) signals for detecting the affective state of ITS users. Features, extracted from ECG signals acquired while users undertook a computerised English language test, were used for the prediction of the self-reported difficulty level of the test's questions. Supervised classification experiments demonstrated the potential of this approach, achieving a classification F1-score of 61.22% for the prediction of the self-assessed difficulty level of the questions.","PeriodicalId":169373,"journal":{"name":"2019 UK/ China Emerging Technologies (UCET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ECG-based affective computing for difficulty level prediction in Intelligent Tutoring Systems\",\"authors\":\"Fehaid Alqahtani, Stamos Katsigiannis, N. Ramzan\",\"doi\":\"10.1109/UCET.2019.8881872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent tutoring Systems (ITS) have emerged as an attractive solution for providing personalised learning experiences on a large scale. Traditional ITS are able to adapt the learning process according to the capabilities and needs of their users, but lack the capability to adapt to their affective/emotional state. In this work, we examine the use of electrocardiography (ECG) signals for detecting the affective state of ITS users. Features, extracted from ECG signals acquired while users undertook a computerised English language test, were used for the prediction of the self-reported difficulty level of the test's questions. Supervised classification experiments demonstrated the potential of this approach, achieving a classification F1-score of 61.22% for the prediction of the self-assessed difficulty level of the questions.\",\"PeriodicalId\":169373,\"journal\":{\"name\":\"2019 UK/ China Emerging Technologies (UCET)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 UK/ China Emerging Technologies (UCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCET.2019.8881872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 UK/ China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET.2019.8881872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ECG-based affective computing for difficulty level prediction in Intelligent Tutoring Systems
Intelligent tutoring Systems (ITS) have emerged as an attractive solution for providing personalised learning experiences on a large scale. Traditional ITS are able to adapt the learning process according to the capabilities and needs of their users, but lack the capability to adapt to their affective/emotional state. In this work, we examine the use of electrocardiography (ECG) signals for detecting the affective state of ITS users. Features, extracted from ECG signals acquired while users undertook a computerised English language test, were used for the prediction of the self-reported difficulty level of the test's questions. Supervised classification experiments demonstrated the potential of this approach, achieving a classification F1-score of 61.22% for the prediction of the self-assessed difficulty level of the questions.