{"title":"具有Ad-hoc过载的HOL模型理论保守扩展的机械化","authors":"A. Gengelbach, Johannes Åman Pohjola, Tjark Weber","doi":"10.4204/EPTCS.332.1","DOIUrl":null,"url":null,"abstract":"Definitions of new symbols merely abbreviate expressions in logical frameworks, and no new facts (regarding previously defined symbols) should hold because of a new definition. In Isabelle/HOL, definable symbols are types and constants. The latter may be ad-hoc overloaded, i.e. have different definitions for non-overlapping types. We prove that symbols that are independent of a new definition may keep their interpretation in a model extension. This work revises our earlier notion of model-theoretic conservative extension and generalises an earlier model construction. We obtain consistency of theories of definitions in higher-order logic (HOL) with ad-hoc overloading as a corollary. Our results are mechanised in the HOL4 theorem prover.","PeriodicalId":262518,"journal":{"name":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mechanisation of Model-theoretic Conservative Extension for HOL with Ad-hoc Overloading\",\"authors\":\"A. Gengelbach, Johannes Åman Pohjola, Tjark Weber\",\"doi\":\"10.4204/EPTCS.332.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Definitions of new symbols merely abbreviate expressions in logical frameworks, and no new facts (regarding previously defined symbols) should hold because of a new definition. In Isabelle/HOL, definable symbols are types and constants. The latter may be ad-hoc overloaded, i.e. have different definitions for non-overlapping types. We prove that symbols that are independent of a new definition may keep their interpretation in a model extension. This work revises our earlier notion of model-theoretic conservative extension and generalises an earlier model construction. We obtain consistency of theories of definitions in higher-order logic (HOL) with ad-hoc overloading as a corollary. Our results are mechanised in the HOL4 theorem prover.\",\"PeriodicalId\":262518,\"journal\":{\"name\":\"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.332.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.332.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanisation of Model-theoretic Conservative Extension for HOL with Ad-hoc Overloading
Definitions of new symbols merely abbreviate expressions in logical frameworks, and no new facts (regarding previously defined symbols) should hold because of a new definition. In Isabelle/HOL, definable symbols are types and constants. The latter may be ad-hoc overloaded, i.e. have different definitions for non-overlapping types. We prove that symbols that are independent of a new definition may keep their interpretation in a model extension. This work revises our earlier notion of model-theoretic conservative extension and generalises an earlier model construction. We obtain consistency of theories of definitions in higher-order logic (HOL) with ad-hoc overloading as a corollary. Our results are mechanised in the HOL4 theorem prover.