基于粒子滤波的捷联磁力计飞行航向估计

Wonmo Koo, S. Chun, S. Sung, Young Jae Lee, T. Kang
{"title":"基于粒子滤波的捷联磁力计飞行航向估计","authors":"Wonmo Koo, S. Chun, S. Sung, Young Jae Lee, T. Kang","doi":"10.1109/NAECON.2008.4806576","DOIUrl":null,"url":null,"abstract":"This paper presents a real-time heading estimation algorithm using IMU and strapdown magnetometer without any other external heading reference. To calibrate the magnetic deviation, sensor errors caused by hard iron effect and initial heading of strapdown magnetometers are considered. In our approach, sensor output distortion due to the soft iron effect is ignored, which is relatively small. First, for the estimation of heading angle, system and measurement model is derived, which is nonlinear. Then particle filter and extended Kalman filter is introduced for performance comparison. The proposed algorithm for the integration of IMU and magnetometer is verified via numerical simulation in Matlab. Simulation result demonstrates accurate heading estimation error within 1 degree for both algorithms when there exists small initial heading error and hard iron effect, yet particle filter provides more robust and precise result than the extended Kalman filter in case the initial heading error and biases are large.","PeriodicalId":254758,"journal":{"name":"2008 IEEE National Aerospace and Electronics Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"In-flight Heading Estimation of Strapdown Magnetometers using Particle Filters\",\"authors\":\"Wonmo Koo, S. Chun, S. Sung, Young Jae Lee, T. Kang\",\"doi\":\"10.1109/NAECON.2008.4806576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a real-time heading estimation algorithm using IMU and strapdown magnetometer without any other external heading reference. To calibrate the magnetic deviation, sensor errors caused by hard iron effect and initial heading of strapdown magnetometers are considered. In our approach, sensor output distortion due to the soft iron effect is ignored, which is relatively small. First, for the estimation of heading angle, system and measurement model is derived, which is nonlinear. Then particle filter and extended Kalman filter is introduced for performance comparison. The proposed algorithm for the integration of IMU and magnetometer is verified via numerical simulation in Matlab. Simulation result demonstrates accurate heading estimation error within 1 degree for both algorithms when there exists small initial heading error and hard iron effect, yet particle filter provides more robust and precise result than the extended Kalman filter in case the initial heading error and biases are large.\",\"PeriodicalId\":254758,\"journal\":{\"name\":\"2008 IEEE National Aerospace and Electronics Conference\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE National Aerospace and Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2008.4806576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2008.4806576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于IMU和捷联磁强计的实时航向估计算法,该算法不需要任何外部航向参考。为了标定磁偏,考虑了硬铁效应和捷联磁力计初始航向引起的传感器误差。在我们的方法中,由于软铁效应的传感器输出失真被忽略,这是相对较小的。首先,对于航向角的估计,建立了非线性的系统和测量模型;然后引入粒子滤波和扩展卡尔曼滤波进行性能比较。在Matlab中通过数值仿真验证了所提出的IMU与磁强计集成算法。仿真结果表明,当存在较小的初始航向误差和硬铁效应时,两种算法的航向估计误差都在1度以内,而当初始航向误差和偏差较大时,粒子滤波比扩展卡尔曼滤波具有更强的鲁棒性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-flight Heading Estimation of Strapdown Magnetometers using Particle Filters
This paper presents a real-time heading estimation algorithm using IMU and strapdown magnetometer without any other external heading reference. To calibrate the magnetic deviation, sensor errors caused by hard iron effect and initial heading of strapdown magnetometers are considered. In our approach, sensor output distortion due to the soft iron effect is ignored, which is relatively small. First, for the estimation of heading angle, system and measurement model is derived, which is nonlinear. Then particle filter and extended Kalman filter is introduced for performance comparison. The proposed algorithm for the integration of IMU and magnetometer is verified via numerical simulation in Matlab. Simulation result demonstrates accurate heading estimation error within 1 degree for both algorithms when there exists small initial heading error and hard iron effect, yet particle filter provides more robust and precise result than the extended Kalman filter in case the initial heading error and biases are large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信