{"title":"基于线路换向变换器的多终端高压直流系统综合分析建模方法","authors":"M. Blechschmidt, C. Hahn, M. Luther","doi":"10.1109/UPEC.2017.8231912","DOIUrl":null,"url":null,"abstract":"This paper presents an analytical model of Line Commutated Converter (LCC) based Multiterminal (MT) High-Voltage Direct Current (HVDC) systems. The approach is based on space phasor transformation and provides a modular HVDC model, since every converter of the MT system is carried out as an independent network. For each switching state of the converter — which is either two valve conduction or commutation — the space phasor transformation provides a subsystem in the complex plane; each of this consists of a voltage source, a grid impedance and a transformer impedance. The commutation current of each converter is derived from the imaginary part network of the respective subsystem. A generalization of the real part network leads to a generic subsystem for all switching states of the converter. A succeeding connection with a state space model of the DC network is performed; applying mesh analysis yields a differential equation system in order to derive the DC current. To verify the accuracy of the developed model, a comparison with an electromagnetic transient (EMT) model is carried out, which shows the consistence of the dynamic behavior.","PeriodicalId":272049,"journal":{"name":"2017 52nd International Universities Power Engineering Conference (UPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comprehensive approach for analytical modeling of line commutated converter based multiterminal HVDC systems\",\"authors\":\"M. Blechschmidt, C. Hahn, M. Luther\",\"doi\":\"10.1109/UPEC.2017.8231912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analytical model of Line Commutated Converter (LCC) based Multiterminal (MT) High-Voltage Direct Current (HVDC) systems. The approach is based on space phasor transformation and provides a modular HVDC model, since every converter of the MT system is carried out as an independent network. For each switching state of the converter — which is either two valve conduction or commutation — the space phasor transformation provides a subsystem in the complex plane; each of this consists of a voltage source, a grid impedance and a transformer impedance. The commutation current of each converter is derived from the imaginary part network of the respective subsystem. A generalization of the real part network leads to a generic subsystem for all switching states of the converter. A succeeding connection with a state space model of the DC network is performed; applying mesh analysis yields a differential equation system in order to derive the DC current. To verify the accuracy of the developed model, a comparison with an electromagnetic transient (EMT) model is carried out, which shows the consistence of the dynamic behavior.\",\"PeriodicalId\":272049,\"journal\":{\"name\":\"2017 52nd International Universities Power Engineering Conference (UPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 52nd International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2017.8231912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 52nd International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2017.8231912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comprehensive approach for analytical modeling of line commutated converter based multiterminal HVDC systems
This paper presents an analytical model of Line Commutated Converter (LCC) based Multiterminal (MT) High-Voltage Direct Current (HVDC) systems. The approach is based on space phasor transformation and provides a modular HVDC model, since every converter of the MT system is carried out as an independent network. For each switching state of the converter — which is either two valve conduction or commutation — the space phasor transformation provides a subsystem in the complex plane; each of this consists of a voltage source, a grid impedance and a transformer impedance. The commutation current of each converter is derived from the imaginary part network of the respective subsystem. A generalization of the real part network leads to a generic subsystem for all switching states of the converter. A succeeding connection with a state space model of the DC network is performed; applying mesh analysis yields a differential equation system in order to derive the DC current. To verify the accuracy of the developed model, a comparison with an electromagnetic transient (EMT) model is carried out, which shows the consistence of the dynamic behavior.