使用混合模型检测监测场景中的异常情况

Adrián Tomé, L. Salgado
{"title":"使用混合模型检测监测场景中的异常情况","authors":"Adrián Tomé, L. Salgado","doi":"10.1109/CCST.2017.8167830","DOIUrl":null,"url":null,"abstract":"In this paper we present a robust and simple method for the detection of anomalies in surveillance scenarios. We use a “bottom-up” approach that avoids any object tracking, making the system suitable for anomaly detection in crowds. A robust optical flow method is used for the extraction of accurate spatio-temporal motion information, which allows to get simple but discriminative descriptors that are employed to train a Gaussian mixture model. We evaluate our system in a publicly available dataset, concluding that our method outperforms similar anomaly detection approaches but with a simpler model and low-sized descriptors.","PeriodicalId":371622,"journal":{"name":"2017 International Carnahan Conference on Security Technology (ICCST)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detection of anomalies in surveillance scenarios using mixture models\",\"authors\":\"Adrián Tomé, L. Salgado\",\"doi\":\"10.1109/CCST.2017.8167830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a robust and simple method for the detection of anomalies in surveillance scenarios. We use a “bottom-up” approach that avoids any object tracking, making the system suitable for anomaly detection in crowds. A robust optical flow method is used for the extraction of accurate spatio-temporal motion information, which allows to get simple but discriminative descriptors that are employed to train a Gaussian mixture model. We evaluate our system in a publicly available dataset, concluding that our method outperforms similar anomaly detection approaches but with a simpler model and low-sized descriptors.\",\"PeriodicalId\":371622,\"journal\":{\"name\":\"2017 International Carnahan Conference on Security Technology (ICCST)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Carnahan Conference on Security Technology (ICCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.2017.8167830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2017.8167830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种鲁棒和简单的方法来检测监视场景中的异常。我们使用“自下而上”的方法,避免了任何对象跟踪,使系统适合于人群中的异常检测。采用鲁棒光流方法提取准确的时空运动信息,得到简单而具有判别性的描述子,用于训练高斯混合模型。我们在一个公开可用的数据集中评估了我们的系统,得出的结论是,我们的方法优于类似的异常检测方法,但使用更简单的模型和较小的描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of anomalies in surveillance scenarios using mixture models
In this paper we present a robust and simple method for the detection of anomalies in surveillance scenarios. We use a “bottom-up” approach that avoids any object tracking, making the system suitable for anomaly detection in crowds. A robust optical flow method is used for the extraction of accurate spatio-temporal motion information, which allows to get simple but discriminative descriptors that are employed to train a Gaussian mixture model. We evaluate our system in a publicly available dataset, concluding that our method outperforms similar anomaly detection approaches but with a simpler model and low-sized descriptors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信