预测媒体兴趣度的深度两两分类和排序

Jayneel Parekh, Harshvardhan Tibrewal, Sanjeel Parekh
{"title":"预测媒体兴趣度的深度两两分类和排序","authors":"Jayneel Parekh, Harshvardhan Tibrewal, Sanjeel Parekh","doi":"10.1145/3206025.3206078","DOIUrl":null,"url":null,"abstract":"With the explosive increase in the consumption of multimedia content in recent years, the field of media interestingness analysis has gained a lot of attention. This paper tackles the problem of image interestingness in videos and proposes a novel algorithm based on pairwise-comparisons of frames to rank all frames in a video. Experiments performed on the Predicting Media Interestingness dataset, affirm its effectiveness over existing solutions. In terms of the official metric i.e. Mean Average Precision at 10, it outperforms the previous state-of-the-art (to the best of our knowledge) on this dataset. Additional results on video interestingness substantiate the flexibility and performance reliability of our approach.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep Pairwise Classification and Ranking for Predicting Media Interestingness\",\"authors\":\"Jayneel Parekh, Harshvardhan Tibrewal, Sanjeel Parekh\",\"doi\":\"10.1145/3206025.3206078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the explosive increase in the consumption of multimedia content in recent years, the field of media interestingness analysis has gained a lot of attention. This paper tackles the problem of image interestingness in videos and proposes a novel algorithm based on pairwise-comparisons of frames to rank all frames in a video. Experiments performed on the Predicting Media Interestingness dataset, affirm its effectiveness over existing solutions. In terms of the official metric i.e. Mean Average Precision at 10, it outperforms the previous state-of-the-art (to the best of our knowledge) on this dataset. Additional results on video interestingness substantiate the flexibility and performance reliability of our approach.\",\"PeriodicalId\":224132,\"journal\":{\"name\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3206025.3206078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着近年来多媒体内容消费的爆炸式增长,媒体趣味性分析领域受到了广泛关注。针对视频中图像的兴趣性问题,提出了一种基于帧的两两比较对视频中所有帧进行排序的新算法。在预测媒体兴趣数据集上进行的实验证实了它比现有解决方案的有效性。就官方指标而言,即10的平均精度,它在该数据集上优于以前最先进的技术(据我们所知)。视频有趣度的其他结果证实了我们方法的灵活性和性能可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Pairwise Classification and Ranking for Predicting Media Interestingness
With the explosive increase in the consumption of multimedia content in recent years, the field of media interestingness analysis has gained a lot of attention. This paper tackles the problem of image interestingness in videos and proposes a novel algorithm based on pairwise-comparisons of frames to rank all frames in a video. Experiments performed on the Predicting Media Interestingness dataset, affirm its effectiveness over existing solutions. In terms of the official metric i.e. Mean Average Precision at 10, it outperforms the previous state-of-the-art (to the best of our knowledge) on this dataset. Additional results on video interestingness substantiate the flexibility and performance reliability of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信