一种增强推荐系统稳定性的遗传方法

I. K. Pradeep, M. Bhaskar, K. H. Bindu
{"title":"一种增强推荐系统稳定性的遗传方法","authors":"I. K. Pradeep, M. Bhaskar, K. H. Bindu","doi":"10.21013/JTE.V3.N3.P5","DOIUrl":null,"url":null,"abstract":"With the growing scope of the E-commerce industry, a recommender system places a critical role in predicting correct entity to the user. Accuracy and degree of trust are most important parameters of a recommender system. Many recommender algorithms are proposed in the literature to enhance the accuracy of recommendations to the user. This paper is focused on enhancing the stability of recommender system using genetic and repetitive smoothening approach. Stability determines the degree of trust by the user to use the items recommended by a recommender system. SVD and slope one recommenders systems are used along with the proposed approach and it has been shown that stability is enhanced using the genetic-repetitive algorithm. Genetic approach has shown significant improvements in the field of research and is considered one of the robust techniques.","PeriodicalId":269688,"journal":{"name":"IRA-International Journal of Technology & Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Genetic Approach for Enhancing Recommender System’s Stability\",\"authors\":\"I. K. Pradeep, M. Bhaskar, K. H. Bindu\",\"doi\":\"10.21013/JTE.V3.N3.P5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing scope of the E-commerce industry, a recommender system places a critical role in predicting correct entity to the user. Accuracy and degree of trust are most important parameters of a recommender system. Many recommender algorithms are proposed in the literature to enhance the accuracy of recommendations to the user. This paper is focused on enhancing the stability of recommender system using genetic and repetitive smoothening approach. Stability determines the degree of trust by the user to use the items recommended by a recommender system. SVD and slope one recommenders systems are used along with the proposed approach and it has been shown that stability is enhanced using the genetic-repetitive algorithm. Genetic approach has shown significant improvements in the field of research and is considered one of the robust techniques.\",\"PeriodicalId\":269688,\"journal\":{\"name\":\"IRA-International Journal of Technology & Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRA-International Journal of Technology & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21013/JTE.V3.N3.P5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRA-International Journal of Technology & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21013/JTE.V3.N3.P5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着电子商务行业规模的不断扩大,推荐系统在向用户预测正确的实体方面起着至关重要的作用。准确性和信任度是推荐系统最重要的参数。文献中提出了许多推荐算法来提高向用户推荐的准确性。本文主要研究了利用遗传和重复平滑方法来增强推荐系统的稳定性。稳定性决定了用户对推荐系统所推荐的商品的信任程度。SVD和斜率1推荐系统与所提出的方法一起使用,并且已经证明使用遗传重复算法可以增强稳定性。遗传方法已经在研究领域显示出显著的进步,被认为是一个强大的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Genetic Approach for Enhancing Recommender System’s Stability
With the growing scope of the E-commerce industry, a recommender system places a critical role in predicting correct entity to the user. Accuracy and degree of trust are most important parameters of a recommender system. Many recommender algorithms are proposed in the literature to enhance the accuracy of recommendations to the user. This paper is focused on enhancing the stability of recommender system using genetic and repetitive smoothening approach. Stability determines the degree of trust by the user to use the items recommended by a recommender system. SVD and slope one recommenders systems are used along with the proposed approach and it has been shown that stability is enhanced using the genetic-repetitive algorithm. Genetic approach has shown significant improvements in the field of research and is considered one of the robust techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信