{"title":"基于稀疏表示的运动历史图像多视图动作分类","authors":"S. Azary, A. Savakis","doi":"10.1109/WNYIPW.2012.6466646","DOIUrl":null,"url":null,"abstract":"Multi-view action classification is an important component of real world applications such as automatic surveillance and sports analysis. Motion History Images capture the location and direction of motion in a scene and sparse representations provide a compact representation of high dimensional signals. In this paper, we propose a multi-view action classification algorithm based on sparse representation of spatio-temporal action representations using motion history images. We find that this approach is effective at multi-view action classification and experiments with the i3DPost Multi-view Dataset achieve high classification rates.","PeriodicalId":218110,"journal":{"name":"2012 Western New York Image Processing Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi-view action classification using sparse representations on Motion History Images\",\"authors\":\"S. Azary, A. Savakis\",\"doi\":\"10.1109/WNYIPW.2012.6466646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-view action classification is an important component of real world applications such as automatic surveillance and sports analysis. Motion History Images capture the location and direction of motion in a scene and sparse representations provide a compact representation of high dimensional signals. In this paper, we propose a multi-view action classification algorithm based on sparse representation of spatio-temporal action representations using motion history images. We find that this approach is effective at multi-view action classification and experiments with the i3DPost Multi-view Dataset achieve high classification rates.\",\"PeriodicalId\":218110,\"journal\":{\"name\":\"2012 Western New York Image Processing Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Western New York Image Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNYIPW.2012.6466646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Western New York Image Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2012.6466646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-view action classification using sparse representations on Motion History Images
Multi-view action classification is an important component of real world applications such as automatic surveillance and sports analysis. Motion History Images capture the location and direction of motion in a scene and sparse representations provide a compact representation of high dimensional signals. In this paper, we propose a multi-view action classification algorithm based on sparse representation of spatio-temporal action representations using motion history images. We find that this approach is effective at multi-view action classification and experiments with the i3DPost Multi-view Dataset achieve high classification rates.