可能性模糊c均值的关系变量和中位数变量

Tina Geweniger, T. Villmann
{"title":"可能性模糊c均值的关系变量和中位数变量","authors":"Tina Geweniger, T. Villmann","doi":"10.1109/WSOM.2017.8020032","DOIUrl":null,"url":null,"abstract":"In this article we propose a relational and a median possibilistic clustering method. Both methods are modifications of Possibilistic Fuzzy C-Means as introduced by Pal et al. [1]. The proposed algorithms are applicable for abstract non-vectorial data objects where only the dissimilarities of the objects are known. For the relational version we assume a Euclidean data embedding. For data where this assumption is not feasible we introduce a median variant restricting prototypes to be data objects themselves.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relational and median variants of Possibilistic Fuzzy C-Means\",\"authors\":\"Tina Geweniger, T. Villmann\",\"doi\":\"10.1109/WSOM.2017.8020032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we propose a relational and a median possibilistic clustering method. Both methods are modifications of Possibilistic Fuzzy C-Means as introduced by Pal et al. [1]. The proposed algorithms are applicable for abstract non-vectorial data objects where only the dissimilarities of the objects are known. For the relational version we assume a Euclidean data embedding. For data where this assumption is not feasible we introduce a median variant restricting prototypes to be data objects themselves.\",\"PeriodicalId\":130086,\"journal\":{\"name\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSOM.2017.8020032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种关系可能性聚类和中位数可能性聚类方法。这两种方法都是对Pal等人提出的可能性模糊c均值的修正。提出的算法适用于抽象的非矢量数据对象,其中只知道对象的不同之处。对于关系版本,我们假设欧几里得数据嵌入。对于这种假设不可行的数据,我们引入一个中间变量,将原型限制为数据对象本身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relational and median variants of Possibilistic Fuzzy C-Means
In this article we propose a relational and a median possibilistic clustering method. Both methods are modifications of Possibilistic Fuzzy C-Means as introduced by Pal et al. [1]. The proposed algorithms are applicable for abstract non-vectorial data objects where only the dissimilarities of the objects are known. For the relational version we assume a Euclidean data embedding. For data where this assumption is not feasible we introduce a median variant restricting prototypes to be data objects themselves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信