基于竞争k均值聚类的多源声音定位

Byoung-gi Lee, Jong-suk Choi
{"title":"基于竞争k均值聚类的多源声音定位","authors":"Byoung-gi Lee, Jong-suk Choi","doi":"10.1109/ETFA.2010.5641169","DOIUrl":null,"url":null,"abstract":"Sound source localization is an important part of intelligent robot auditory system. It makes a robot to respond naturally to human user's call. In the ordinary situations, there always exist multiple sound sources including user's call. Since localized outputs from each source are mixed in distribution, clustering is an important issue in the multi-source sound localization. In this work, we propose a new k-means clustering algorithm for unknown number of clusters, which is the competitive k-means. We compared its performance to the adaptive k-means++ algorithm and verified its effectiveness. Finally, we applied it to our sound source localization for multi-source sound localization and achieved satisfying results.","PeriodicalId":201440,"journal":{"name":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multi-source sound localization using the competitive k-means clustering\",\"authors\":\"Byoung-gi Lee, Jong-suk Choi\",\"doi\":\"10.1109/ETFA.2010.5641169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sound source localization is an important part of intelligent robot auditory system. It makes a robot to respond naturally to human user's call. In the ordinary situations, there always exist multiple sound sources including user's call. Since localized outputs from each source are mixed in distribution, clustering is an important issue in the multi-source sound localization. In this work, we propose a new k-means clustering algorithm for unknown number of clusters, which is the competitive k-means. We compared its performance to the adaptive k-means++ algorithm and verified its effectiveness. Finally, we applied it to our sound source localization for multi-source sound localization and achieved satisfying results.\",\"PeriodicalId\":201440,\"journal\":{\"name\":\"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2010.5641169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2010.5641169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

声源定位是智能机器人听觉系统的重要组成部分。它使机器人能够自然地响应人类用户的呼叫。在一般情况下,总是存在多个声源,包括用户的呼叫。由于每个声源的局部输出在分布上是混合的,因此聚类是多声源声音定位中的一个重要问题。在这项工作中,我们提出了一种新的未知数量聚类的k-means聚类算法,即竞争k-means。我们将其性能与自适应k-means++算法进行了比较,验证了其有效性。最后,将其应用于声源定位中进行多声源定位,取得了满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-source sound localization using the competitive k-means clustering
Sound source localization is an important part of intelligent robot auditory system. It makes a robot to respond naturally to human user's call. In the ordinary situations, there always exist multiple sound sources including user's call. Since localized outputs from each source are mixed in distribution, clustering is an important issue in the multi-source sound localization. In this work, we propose a new k-means clustering algorithm for unknown number of clusters, which is the competitive k-means. We compared its performance to the adaptive k-means++ algorithm and verified its effectiveness. Finally, we applied it to our sound source localization for multi-source sound localization and achieved satisfying results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信