Licinio Oliveira, Jaime S. Cardoso, A. Lourenço, Christer Ahlström
{"title":"驾驶员困倦检测:侵入式和非侵入式信号采集方法的比较","authors":"Licinio Oliveira, Jaime S. Cardoso, A. Lourenço, Christer Ahlström","doi":"10.1109/EUVIP.2018.8611704","DOIUrl":null,"url":null,"abstract":"Driver drowsiness is a major cause of road accidents, many of which result in fatalities. A solution to this problem is the inclusion of a drowsiness detector in vehicles to alert the driver if sleepiness is detected. To detect drowsiness, physiologic, behavioral (visual) and vehicle-based methods can be used, however, only measures that can be acquired non-intrusively are viable in a real life application. This work uses data from a real-road experiment with sleep deprived drivers to compare the performance of driver drowsiness detection using intrusive acquisition methods, namely electrooculogram (EOG), with camera-based, non-intrusive, methods. A hybrid strategy, combining the described methods with electrocardiogram (ECG) measures, is also evaluated. Overall, the obtained results show that drowsiness detection performance is similar using non-intrusive camera-based measures or intrusive EOG measures. The detection performance increases when combining two methods (ECG + visual) or (ECG + EOG).","PeriodicalId":252212,"journal":{"name":"2018 7th European Workshop on Visual Information Processing (EUVIP)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Driver drowsiness detection: a comparison between intrusive and non-intrusive signal acquisition methods\",\"authors\":\"Licinio Oliveira, Jaime S. Cardoso, A. Lourenço, Christer Ahlström\",\"doi\":\"10.1109/EUVIP.2018.8611704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driver drowsiness is a major cause of road accidents, many of which result in fatalities. A solution to this problem is the inclusion of a drowsiness detector in vehicles to alert the driver if sleepiness is detected. To detect drowsiness, physiologic, behavioral (visual) and vehicle-based methods can be used, however, only measures that can be acquired non-intrusively are viable in a real life application. This work uses data from a real-road experiment with sleep deprived drivers to compare the performance of driver drowsiness detection using intrusive acquisition methods, namely electrooculogram (EOG), with camera-based, non-intrusive, methods. A hybrid strategy, combining the described methods with electrocardiogram (ECG) measures, is also evaluated. Overall, the obtained results show that drowsiness detection performance is similar using non-intrusive camera-based measures or intrusive EOG measures. The detection performance increases when combining two methods (ECG + visual) or (ECG + EOG).\",\"PeriodicalId\":252212,\"journal\":{\"name\":\"2018 7th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2018.8611704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2018.8611704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Driver drowsiness detection: a comparison between intrusive and non-intrusive signal acquisition methods
Driver drowsiness is a major cause of road accidents, many of which result in fatalities. A solution to this problem is the inclusion of a drowsiness detector in vehicles to alert the driver if sleepiness is detected. To detect drowsiness, physiologic, behavioral (visual) and vehicle-based methods can be used, however, only measures that can be acquired non-intrusively are viable in a real life application. This work uses data from a real-road experiment with sleep deprived drivers to compare the performance of driver drowsiness detection using intrusive acquisition methods, namely electrooculogram (EOG), with camera-based, non-intrusive, methods. A hybrid strategy, combining the described methods with electrocardiogram (ECG) measures, is also evaluated. Overall, the obtained results show that drowsiness detection performance is similar using non-intrusive camera-based measures or intrusive EOG measures. The detection performance increases when combining two methods (ECG + visual) or (ECG + EOG).