Yuquan Li, Gexiang Zhang, Xiangxiang Zeng, Jixiang Cheng, M. Gheorghe, Susan Elias
{"title":"一种用于数值优化的改进估计分布算法","authors":"Yuquan Li, Gexiang Zhang, Xiangxiang Zeng, Jixiang Cheng, M. Gheorghe, Susan Elias","doi":"10.1109/BIC-TA.2011.14","DOIUrl":null,"url":null,"abstract":"Estimation of distribution algorithms (EDAs) is a class of probabilistic model-building evolutionary algorithms, which is characterized by learning and sampling the probability distribution of the selected individuals. This paper proposes a modified estimation of distribution algorithm (mEDA) for numeric optimization. mEDA uses a novel sampling method, called centro-individual sampling, and a fuzzy c-means clustering technique to improve its performance. Extensive experiments conducted on a set of benchmark functions show that mEDA outperforms HPBILc, CEGDA, CEGNABGe and NichingEDA, reported in the literature, in terms of the quality of solutions.","PeriodicalId":211822,"journal":{"name":"2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Estimation of Distribution Algorithm for Numeric Optimization\",\"authors\":\"Yuquan Li, Gexiang Zhang, Xiangxiang Zeng, Jixiang Cheng, M. Gheorghe, Susan Elias\",\"doi\":\"10.1109/BIC-TA.2011.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of distribution algorithms (EDAs) is a class of probabilistic model-building evolutionary algorithms, which is characterized by learning and sampling the probability distribution of the selected individuals. This paper proposes a modified estimation of distribution algorithm (mEDA) for numeric optimization. mEDA uses a novel sampling method, called centro-individual sampling, and a fuzzy c-means clustering technique to improve its performance. Extensive experiments conducted on a set of benchmark functions show that mEDA outperforms HPBILc, CEGDA, CEGNABGe and NichingEDA, reported in the literature, in terms of the quality of solutions.\",\"PeriodicalId\":211822,\"journal\":{\"name\":\"2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIC-TA.2011.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIC-TA.2011.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Modified Estimation of Distribution Algorithm for Numeric Optimization
Estimation of distribution algorithms (EDAs) is a class of probabilistic model-building evolutionary algorithms, which is characterized by learning and sampling the probability distribution of the selected individuals. This paper proposes a modified estimation of distribution algorithm (mEDA) for numeric optimization. mEDA uses a novel sampling method, called centro-individual sampling, and a fuzzy c-means clustering technique to improve its performance. Extensive experiments conducted on a set of benchmark functions show that mEDA outperforms HPBILc, CEGDA, CEGNABGe and NichingEDA, reported in the literature, in terms of the quality of solutions.