{"title":"与能源开发技术相关的流体注入过程中诱发地震活动的案例研究","authors":"Chung-In Lee, K. Min, Kwang-Il Kim","doi":"10.7474/TUS.2014.24.6.418","DOIUrl":null,"url":null,"abstract":"Induced seismicity related to four energy development technologies that involve fluid injection or withdrawal: geothermal energy, conventional oil and gas development including enhanced oil recovery (EOR), shale gas recovery, and carbon capture and storage (CCS) is reviewed by literature investigation. The largest induced seismic events reported in the technical literature are associated with projects that did not balance the large volume of fluids injected into, or extracted from the underground reservoir. A statistical observation shows that the net volume of fluid injected and/or extracted may serve as a proxy for changes in subsurface stress conditions and pore pressure, and other factors. Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and the amount of fluid being withdrawn, such as geothermal and most oil and gas development, may produce fewer induced seismic events than technologies that do not maintain fluid balance, such as long-term wastewater disposal wells and CCS projects.","PeriodicalId":437780,"journal":{"name":"Journal of Korean Society for Rock Mechanics","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Case Study on Induced Seismicity during the Injection of Fluid Related to Energy Development Technologies\",\"authors\":\"Chung-In Lee, K. Min, Kwang-Il Kim\",\"doi\":\"10.7474/TUS.2014.24.6.418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Induced seismicity related to four energy development technologies that involve fluid injection or withdrawal: geothermal energy, conventional oil and gas development including enhanced oil recovery (EOR), shale gas recovery, and carbon capture and storage (CCS) is reviewed by literature investigation. The largest induced seismic events reported in the technical literature are associated with projects that did not balance the large volume of fluids injected into, or extracted from the underground reservoir. A statistical observation shows that the net volume of fluid injected and/or extracted may serve as a proxy for changes in subsurface stress conditions and pore pressure, and other factors. Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and the amount of fluid being withdrawn, such as geothermal and most oil and gas development, may produce fewer induced seismic events than technologies that do not maintain fluid balance, such as long-term wastewater disposal wells and CCS projects.\",\"PeriodicalId\":437780,\"journal\":{\"name\":\"Journal of Korean Society for Rock Mechanics\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Korean Society for Rock Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7474/TUS.2014.24.6.418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Society for Rock Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7474/TUS.2014.24.6.418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Case Study on Induced Seismicity during the Injection of Fluid Related to Energy Development Technologies
Induced seismicity related to four energy development technologies that involve fluid injection or withdrawal: geothermal energy, conventional oil and gas development including enhanced oil recovery (EOR), shale gas recovery, and carbon capture and storage (CCS) is reviewed by literature investigation. The largest induced seismic events reported in the technical literature are associated with projects that did not balance the large volume of fluids injected into, or extracted from the underground reservoir. A statistical observation shows that the net volume of fluid injected and/or extracted may serve as a proxy for changes in subsurface stress conditions and pore pressure, and other factors. Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and the amount of fluid being withdrawn, such as geothermal and most oil and gas development, may produce fewer induced seismic events than technologies that do not maintain fluid balance, such as long-term wastewater disposal wells and CCS projects.