重新审视随机子集和问题

A. D. Cunha, Francesco d’Amore, F. Giroire, Hicham Lesfari, Emanuele Natale, L. Viennot
{"title":"重新审视随机子集和问题","authors":"A. D. Cunha, Francesco d’Amore, F. Giroire, Hicham Lesfari, Emanuele Natale, L. Viennot","doi":"10.4230/LIPIcs.ESA.2023.37","DOIUrl":null,"url":null,"abstract":"The average properties of the well-known Subset Sum Problem can be studied by the means of its randomised version, where we are given a target value $z$, random variables $X_1, \\ldots, X_n$, and an error parameter $\\varepsilon>0$, and we seek a subset of the $X_i$s whose sum approximates $z$ up to error $\\varepsilon$. In this setup, it has been shown that, under mild assumptions on the distribution of the random variables, a sample of size $\\mathcal{O}(\\log(1/\\varepsilon))$ suffices to obtain, with high probability, approximations for all values in $[-1/2, 1/2]$. Recently, this result has been rediscovered outside the algorithms community, enabling meaningful progress in other fields. In this work we present an alternative proof for this theorem, with a more direct approach and resourcing to more elementary tools.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Revisiting the Random Subset Sum Problem\",\"authors\":\"A. D. Cunha, Francesco d’Amore, F. Giroire, Hicham Lesfari, Emanuele Natale, L. Viennot\",\"doi\":\"10.4230/LIPIcs.ESA.2023.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The average properties of the well-known Subset Sum Problem can be studied by the means of its randomised version, where we are given a target value $z$, random variables $X_1, \\\\ldots, X_n$, and an error parameter $\\\\varepsilon>0$, and we seek a subset of the $X_i$s whose sum approximates $z$ up to error $\\\\varepsilon$. In this setup, it has been shown that, under mild assumptions on the distribution of the random variables, a sample of size $\\\\mathcal{O}(\\\\log(1/\\\\varepsilon))$ suffices to obtain, with high probability, approximations for all values in $[-1/2, 1/2]$. Recently, this result has been rediscovered outside the algorithms community, enabling meaningful progress in other fields. In this work we present an alternative proof for this theorem, with a more direct approach and resourcing to more elementary tools.\",\"PeriodicalId\":201778,\"journal\":{\"name\":\"Embedded Systems and Applications\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ESA.2023.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ESA.2023.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

众所周知的子集和问题的平均性质可以通过其随机化版本来研究,其中我们给定一个目标值$z$,随机变量$X_1, \ldots, X_n$和一个误差参数$\varepsilon>0$,并且我们寻求一个和接近$z$到误差$\varepsilon$的$X_i$ s的子集。在此设置中,已经表明,在对随机变量分布的温和假设下,大小为$\mathcal{O}(\log(1/\varepsilon))$的样本足以以高概率获得$[-1/2, 1/2]$中所有值的近似值。最近,这一结果在算法社区之外被重新发现,使其他领域取得了有意义的进展。在这项工作中,我们提出了这个定理的另一种证明,采用了更直接的方法和更基本的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the Random Subset Sum Problem
The average properties of the well-known Subset Sum Problem can be studied by the means of its randomised version, where we are given a target value $z$, random variables $X_1, \ldots, X_n$, and an error parameter $\varepsilon>0$, and we seek a subset of the $X_i$s whose sum approximates $z$ up to error $\varepsilon$. In this setup, it has been shown that, under mild assumptions on the distribution of the random variables, a sample of size $\mathcal{O}(\log(1/\varepsilon))$ suffices to obtain, with high probability, approximations for all values in $[-1/2, 1/2]$. Recently, this result has been rediscovered outside the algorithms community, enabling meaningful progress in other fields. In this work we present an alternative proof for this theorem, with a more direct approach and resourcing to more elementary tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信