变分不等式问题的一种自适应步长惯性次梯度外聚算法

Xiaokai Chang, Sanyang Liu, Zhao Deng, Suoping Li
{"title":"变分不等式问题的一种自适应步长惯性次梯度外聚算法","authors":"Xiaokai Chang, Sanyang Liu, Zhao Deng, Suoping Li","doi":"10.1080/10556788.2021.1910946","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an efficient subgradient extragradient (SE) based method for solving variational inequality problems with monotone operator in Hilbert space. In many existing SE methods, two values of operator are needed over each iteration and the Lipschitz constant of the operator or linesearch is required for estimating step sizes, which are usually not practical and expensive. To overcome these drawbacks, we present an inertial SE based algorithm with adaptive step sizes, estimated by using an approximation of the local Lipschitz constant without running a linesearch. Each iteration of the method only requires a projection on the feasible set and a value of the operator. The numerical experiments illustrate the efficiency of the proposed algorithm.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An inertial subgradient extragradient algorithm with adaptive stepsizes for variational inequality problems\",\"authors\":\"Xiaokai Chang, Sanyang Liu, Zhao Deng, Suoping Li\",\"doi\":\"10.1080/10556788.2021.1910946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce an efficient subgradient extragradient (SE) based method for solving variational inequality problems with monotone operator in Hilbert space. In many existing SE methods, two values of operator are needed over each iteration and the Lipschitz constant of the operator or linesearch is required for estimating step sizes, which are usually not practical and expensive. To overcome these drawbacks, we present an inertial SE based algorithm with adaptive step sizes, estimated by using an approximation of the local Lipschitz constant without running a linesearch. Each iteration of the method only requires a projection on the feasible set and a value of the operator. The numerical experiments illustrate the efficiency of the proposed algorithm.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2021.1910946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2021.1910946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文介绍了一种有效的基于次梯度外梯度(SE)的方法,用于求解Hilbert空间中单调算子的变分不等式问题。在现有的许多SE方法中,每次迭代都需要两个算子值,并且需要算子的Lipschitz常数或直线研究来估计步长,这通常是不实用且昂贵的。为了克服这些缺点,我们提出了一种基于惯性SE的自适应步长算法,该算法通过使用局部Lipschitz常数的近似值来估计,而无需进行直线研究。该方法的每次迭代只需要在可行集上的一个投影和算子的一个值。数值实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An inertial subgradient extragradient algorithm with adaptive stepsizes for variational inequality problems
In this paper, we introduce an efficient subgradient extragradient (SE) based method for solving variational inequality problems with monotone operator in Hilbert space. In many existing SE methods, two values of operator are needed over each iteration and the Lipschitz constant of the operator or linesearch is required for estimating step sizes, which are usually not practical and expensive. To overcome these drawbacks, we present an inertial SE based algorithm with adaptive step sizes, estimated by using an approximation of the local Lipschitz constant without running a linesearch. Each iteration of the method only requires a projection on the feasible set and a value of the operator. The numerical experiments illustrate the efficiency of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信