{"title":"懒网:用于加速和高效推理的懒入口神经网络","authors":"Junyong Park, Dae-Young Kim, Yong-Hyuk Moon","doi":"10.1109/ICTC55196.2022.9953031","DOIUrl":null,"url":null,"abstract":"Modern edge devices have become powerful enough to run deep learning tasks, but there are still many challenges, such as limited resources such as computing power, memory space, and energy. To address these challenges, methods such as channel pruning, network quantization and early exiting has been introduced to reduce the computational load for achieve this tasks. In this paper, we propose LazyNet, an alternative network of applying skip modules instead of early exiting on a pre-trained neural network. We use a small module that preserves the spatial information and also provides metrics to decide the computational flow. If the data sample is easy, the network skips most of the computation load and if not, the network computes the sample for accurate classification. We test our model with various backbone networks and cifar-10 dataset and show reduction on model inference time, memory consumption and increased accuracy to prove our results.","PeriodicalId":441404,"journal":{"name":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lazy Net: Lazy Entry Neural Networks for Accelerated and Efficient Inference\",\"authors\":\"Junyong Park, Dae-Young Kim, Yong-Hyuk Moon\",\"doi\":\"10.1109/ICTC55196.2022.9953031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern edge devices have become powerful enough to run deep learning tasks, but there are still many challenges, such as limited resources such as computing power, memory space, and energy. To address these challenges, methods such as channel pruning, network quantization and early exiting has been introduced to reduce the computational load for achieve this tasks. In this paper, we propose LazyNet, an alternative network of applying skip modules instead of early exiting on a pre-trained neural network. We use a small module that preserves the spatial information and also provides metrics to decide the computational flow. If the data sample is easy, the network skips most of the computation load and if not, the network computes the sample for accurate classification. We test our model with various backbone networks and cifar-10 dataset and show reduction on model inference time, memory consumption and increased accuracy to prove our results.\",\"PeriodicalId\":441404,\"journal\":{\"name\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC55196.2022.9953031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC55196.2022.9953031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lazy Net: Lazy Entry Neural Networks for Accelerated and Efficient Inference
Modern edge devices have become powerful enough to run deep learning tasks, but there are still many challenges, such as limited resources such as computing power, memory space, and energy. To address these challenges, methods such as channel pruning, network quantization and early exiting has been introduced to reduce the computational load for achieve this tasks. In this paper, we propose LazyNet, an alternative network of applying skip modules instead of early exiting on a pre-trained neural network. We use a small module that preserves the spatial information and also provides metrics to decide the computational flow. If the data sample is easy, the network skips most of the computation load and if not, the network computes the sample for accurate classification. We test our model with various backbone networks and cifar-10 dataset and show reduction on model inference time, memory consumption and increased accuracy to prove our results.