基于重构和判别特征的低维子空间鲁棒人脸识别

Mahesh M. Goyani, Gunvantsinh Gohil, Amit Chaudhari
{"title":"基于重构和判别特征的低维子空间鲁棒人脸识别","authors":"Mahesh M. Goyani, Gunvantsinh Gohil, Amit Chaudhari","doi":"10.1109/CSNT.2011.80","DOIUrl":null,"url":null,"abstract":"In this paper, we have discussed dimensionality reduction techniques for face recognition - Principle Component Analysis (PCA) and Fisher Discriminant Analysis(FDA). Both the methods are based on linear projection, which projects the face from higher dimensional image space to lower dimensional feature space. PCA derives the most expressive features (MEF) by projecting face vector such that it captures greatest variance. FDA derives most discriminating features(MDF) by maximizing between class scatter and minimizing within class scatter. Lower dimensional features are used for recognition process. Classification can be achieved using Neural Network (NN), Support Vector Machine (SVM) etc. We have tested our system for the L2 norm measure. At the end of the paper, we have discussed results which show that FDA out weights the performance of PCA with average recognition rate more than 95%.","PeriodicalId":294850,"journal":{"name":"2011 International Conference on Communication Systems and Network Technologies","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Face Recognition in Low Dimensional Subspace Using Reconstructive and Discriminative Features\",\"authors\":\"Mahesh M. Goyani, Gunvantsinh Gohil, Amit Chaudhari\",\"doi\":\"10.1109/CSNT.2011.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have discussed dimensionality reduction techniques for face recognition - Principle Component Analysis (PCA) and Fisher Discriminant Analysis(FDA). Both the methods are based on linear projection, which projects the face from higher dimensional image space to lower dimensional feature space. PCA derives the most expressive features (MEF) by projecting face vector such that it captures greatest variance. FDA derives most discriminating features(MDF) by maximizing between class scatter and minimizing within class scatter. Lower dimensional features are used for recognition process. Classification can be achieved using Neural Network (NN), Support Vector Machine (SVM) etc. We have tested our system for the L2 norm measure. At the end of the paper, we have discussed results which show that FDA out weights the performance of PCA with average recognition rate more than 95%.\",\"PeriodicalId\":294850,\"journal\":{\"name\":\"2011 International Conference on Communication Systems and Network Technologies\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Communication Systems and Network Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNT.2011.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communication Systems and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNT.2011.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了人脸识别中的降维技术——主成分分析(PCA)和Fisher判别分析(FDA)。这两种方法都是基于线性投影,将人脸从高维图像空间投影到低维特征空间。PCA通过对人脸向量的投影来获得最具表现力的特征(MEF),从而获得最大的方差。FDA通过最大化类间散点和最小化类内散点推导出最判别特征(MDF)。低维特征用于识别过程。分类可以使用神经网络(NN)、支持向量机(SVM)等来实现。我们已经对我们的系统进行了L2范数测量测试。在文章的最后,我们讨论了一些结果,表明FDA对PCA的平均识别率大于95%的性能进行了加权。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Face Recognition in Low Dimensional Subspace Using Reconstructive and Discriminative Features
In this paper, we have discussed dimensionality reduction techniques for face recognition - Principle Component Analysis (PCA) and Fisher Discriminant Analysis(FDA). Both the methods are based on linear projection, which projects the face from higher dimensional image space to lower dimensional feature space. PCA derives the most expressive features (MEF) by projecting face vector such that it captures greatest variance. FDA derives most discriminating features(MDF) by maximizing between class scatter and minimizing within class scatter. Lower dimensional features are used for recognition process. Classification can be achieved using Neural Network (NN), Support Vector Machine (SVM) etc. We have tested our system for the L2 norm measure. At the end of the paper, we have discussed results which show that FDA out weights the performance of PCA with average recognition rate more than 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信