基于弹性的城市基础设施系统抗震改造

Chuang Liu, Min Xu, Shenglan Hu, M. Ouyang
{"title":"基于弹性的城市基础设施系统抗震改造","authors":"Chuang Liu, Min Xu, Shenglan Hu, M. Ouyang","doi":"10.20517/dpr.2023.07","DOIUrl":null,"url":null,"abstract":"Earthquakes are among the most devastating natural disasters, posing a significant threat to human life and property. With the rapid pace of urbanization, urban risk against earthquakes has increased, making them an increasingly pressing concern for human society. Urban infrastructure systems (UISs), such as electric power, water supply, and gas systems, are essential to the smooth functioning of modern society but are highly vulnerable to ground shaking, resulting in service interruptions to customers and triggering negative impacts on society. This article focuses on the seismic retrofit problem, which intends to enhance the resilience of UISs against seismic hazards. First, a two-stage stochastic programming model is developed for the seismic retrofit problem, where the first stage seeks an optimal seismic retrofit strategy under a limited budget, and the second stage attempts to identify a repair sequence to maximize the system resilience under the given retrofit strategy. Then, this article introduces a heuristic algorithm based on the scenario reduction method and integer L-shaped method to solve the formulated model. Finally, numerical experiments on the Qujing power transmission system are conducted to validate the proposed algorithm. Results show that they can be applied to the resilience-based seismic retrofit problem of large-scale UISs.","PeriodicalId":265488,"journal":{"name":"Disaster Prevention and Resilience","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilience-based seismic retrofit of urban infrastructure systems\",\"authors\":\"Chuang Liu, Min Xu, Shenglan Hu, M. Ouyang\",\"doi\":\"10.20517/dpr.2023.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earthquakes are among the most devastating natural disasters, posing a significant threat to human life and property. With the rapid pace of urbanization, urban risk against earthquakes has increased, making them an increasingly pressing concern for human society. Urban infrastructure systems (UISs), such as electric power, water supply, and gas systems, are essential to the smooth functioning of modern society but are highly vulnerable to ground shaking, resulting in service interruptions to customers and triggering negative impacts on society. This article focuses on the seismic retrofit problem, which intends to enhance the resilience of UISs against seismic hazards. First, a two-stage stochastic programming model is developed for the seismic retrofit problem, where the first stage seeks an optimal seismic retrofit strategy under a limited budget, and the second stage attempts to identify a repair sequence to maximize the system resilience under the given retrofit strategy. Then, this article introduces a heuristic algorithm based on the scenario reduction method and integer L-shaped method to solve the formulated model. Finally, numerical experiments on the Qujing power transmission system are conducted to validate the proposed algorithm. Results show that they can be applied to the resilience-based seismic retrofit problem of large-scale UISs.\",\"PeriodicalId\":265488,\"journal\":{\"name\":\"Disaster Prevention and Resilience\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disaster Prevention and Resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/dpr.2023.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disaster Prevention and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/dpr.2023.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地震是最具破坏性的自然灾害之一,对人类生命财产构成重大威胁。随着城市化的快速发展,城市的地震风险日益增加,成为人类社会日益迫切关注的问题。城市基础设施系统(UISs),如电力、供水和燃气系统,对现代社会的顺利运作至关重要,但极易受到地面震动的影响,导致客户服务中断,并对社会产生负面影响。本文重点研究了地震加固问题,旨在提高美军基地对地震灾害的抵御能力。首先,针对地震改造问题建立了两阶段随机规划模型,其中第一阶段寻求有限预算下的最优地震改造策略,第二阶段试图确定在给定改造策略下最大限度地提高系统弹性的修复顺序。然后,本文介绍了一种基于场景约简法和整数l形法的启发式算法来求解所制定的模型。最后,在曲靖输电系统上进行了数值实验,验证了算法的有效性。结果表明,该方法可应用于大型usis基于弹性的抗震改造问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resilience-based seismic retrofit of urban infrastructure systems
Earthquakes are among the most devastating natural disasters, posing a significant threat to human life and property. With the rapid pace of urbanization, urban risk against earthquakes has increased, making them an increasingly pressing concern for human society. Urban infrastructure systems (UISs), such as electric power, water supply, and gas systems, are essential to the smooth functioning of modern society but are highly vulnerable to ground shaking, resulting in service interruptions to customers and triggering negative impacts on society. This article focuses on the seismic retrofit problem, which intends to enhance the resilience of UISs against seismic hazards. First, a two-stage stochastic programming model is developed for the seismic retrofit problem, where the first stage seeks an optimal seismic retrofit strategy under a limited budget, and the second stage attempts to identify a repair sequence to maximize the system resilience under the given retrofit strategy. Then, this article introduces a heuristic algorithm based on the scenario reduction method and integer L-shaped method to solve the formulated model. Finally, numerical experiments on the Qujing power transmission system are conducted to validate the proposed algorithm. Results show that they can be applied to the resilience-based seismic retrofit problem of large-scale UISs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信