莫纳罗亚太阳天文台k -日冕仪记录的日冕物质抛射结构

Hongqiang Song, Leping Li, Zhenjun Zhou, L. Xia, Xin Cheng, Yao-wu Chen
{"title":"莫纳罗亚太阳天文台k -日冕仪记录的日冕物质抛射结构","authors":"Hongqiang Song, Leping Li, Zhenjun Zhou, L. Xia, Xin Cheng, Yao-wu Chen","doi":"10.3847/2041-8213/ace422","DOIUrl":null,"url":null,"abstract":"Previous survey studies reported that coronal mass ejections (CMEs) can exhibit various structures in white-light coronagraphs, and ∼30% of them have the typical three-part feature in the high corona (e.g., 2–6 R ⊙), which has been taken as the prototypical structure of CMEs. It is widely accepted that CMEs result from eruption of magnetic flux ropes (MFRs), and the three-part structure can be understood easily by means of the MFR eruption. It is interesting and significant to answer why only ∼30% of CMEs have the three-part feature in previous studies. Here we conduct a synthesis of the CME structure in the field of view (FOV) of K-Coronagraph (1.05–3 R ⊙). In total, 369 CMEs are observed from 2013 September to 2022 November. After inspecting the CMEs one by one through joint observations of the Atmospheric Imaging Assembly, K-Coronagraph, and LASCO/C2, we find 71 events according to the criteria: (1) limb event; (2) normal CME, i.e., angular width ≥30°; (3) K-Coronagraph caught the early eruption stage. All (or more than 90% considering several ambiguous events) of the 71 CMEs exhibit the three-part feature in the FOV of K-Coronagraph, while only 30%–40% have the feature in the C2 FOV (2–6 R ⊙). For the first time, our studies show that 90%–100% and 30%–40% of normal CMEs possess the three-part structure in the low and high corona, respectively, which demonstrates that many CMEs can lose the three-part feature during their early evolutions, and strongly supports that most (if not all) CMEs have the MFR structures.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Structure of Coronal Mass Ejections Recorded by the K-Coronagraph at Mauna Loa Solar Observatory\",\"authors\":\"Hongqiang Song, Leping Li, Zhenjun Zhou, L. Xia, Xin Cheng, Yao-wu Chen\",\"doi\":\"10.3847/2041-8213/ace422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous survey studies reported that coronal mass ejections (CMEs) can exhibit various structures in white-light coronagraphs, and ∼30% of them have the typical three-part feature in the high corona (e.g., 2–6 R ⊙), which has been taken as the prototypical structure of CMEs. It is widely accepted that CMEs result from eruption of magnetic flux ropes (MFRs), and the three-part structure can be understood easily by means of the MFR eruption. It is interesting and significant to answer why only ∼30% of CMEs have the three-part feature in previous studies. Here we conduct a synthesis of the CME structure in the field of view (FOV) of K-Coronagraph (1.05–3 R ⊙). In total, 369 CMEs are observed from 2013 September to 2022 November. After inspecting the CMEs one by one through joint observations of the Atmospheric Imaging Assembly, K-Coronagraph, and LASCO/C2, we find 71 events according to the criteria: (1) limb event; (2) normal CME, i.e., angular width ≥30°; (3) K-Coronagraph caught the early eruption stage. All (or more than 90% considering several ambiguous events) of the 71 CMEs exhibit the three-part feature in the FOV of K-Coronagraph, while only 30%–40% have the feature in the C2 FOV (2–6 R ⊙). For the first time, our studies show that 90%–100% and 30%–40% of normal CMEs possess the three-part structure in the low and high corona, respectively, which demonstrates that many CMEs can lose the three-part feature during their early evolutions, and strongly supports that most (if not all) CMEs have the MFR structures.\",\"PeriodicalId\":179976,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ace422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ace422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

以往的调查研究报道,日冕物质抛射(cme)在白光日冕仪中可以表现出多种结构,其中约30%具有典型的高日冕(例如2-6 R⊙)的三部分特征,这被认为是cme的原型结构。人们普遍认为日冕物质抛射是由磁通绳(magnetic flux ropes, MFRs)喷发引起的,利用磁通绳喷发可以很容易地理解cme的三部分结构。在以前的研究中,为什么只有~ 30%的日冕物质抛射具有三部分特征,这是一个有趣而有意义的问题。本文对k -日冕仪(1.05-3 R⊙)视场(FOV)中的CME结构进行了综合。从2013年9月到2022年11月,总共观测到369次日冕物质抛射。通过大气成像组件、k -日冕仪和LASCO/C2的联合观测,对日冕抛射事件进行逐一检查,发现71个事件,符合以下标准:(1)边缘事件;(2)正常CME,即角宽度≥30°;(3) k -日冕仪捕捉到了早期喷发阶段。71次日冕物质抛射中,k -日冕仪视场全部呈现三分量特征(考虑到若干模糊事件,超过90%),而C2视场只有30%-40%呈现三分量特征(2-6 R⊙)。我们的研究首次表明,90% ~ 100%的正常日冕和30% ~ 40%的正常日冕在低日冕和高日冕中分别具有三部分结构,这表明许多日冕在其早期演化过程中失去了三部分特征,有力地支持了大多数(如果不是全部)日冕具有MFR结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Structure of Coronal Mass Ejections Recorded by the K-Coronagraph at Mauna Loa Solar Observatory
Previous survey studies reported that coronal mass ejections (CMEs) can exhibit various structures in white-light coronagraphs, and ∼30% of them have the typical three-part feature in the high corona (e.g., 2–6 R ⊙), which has been taken as the prototypical structure of CMEs. It is widely accepted that CMEs result from eruption of magnetic flux ropes (MFRs), and the three-part structure can be understood easily by means of the MFR eruption. It is interesting and significant to answer why only ∼30% of CMEs have the three-part feature in previous studies. Here we conduct a synthesis of the CME structure in the field of view (FOV) of K-Coronagraph (1.05–3 R ⊙). In total, 369 CMEs are observed from 2013 September to 2022 November. After inspecting the CMEs one by one through joint observations of the Atmospheric Imaging Assembly, K-Coronagraph, and LASCO/C2, we find 71 events according to the criteria: (1) limb event; (2) normal CME, i.e., angular width ≥30°; (3) K-Coronagraph caught the early eruption stage. All (or more than 90% considering several ambiguous events) of the 71 CMEs exhibit the three-part feature in the FOV of K-Coronagraph, while only 30%–40% have the feature in the C2 FOV (2–6 R ⊙). For the first time, our studies show that 90%–100% and 30%–40% of normal CMEs possess the three-part structure in the low and high corona, respectively, which demonstrates that many CMEs can lose the three-part feature during their early evolutions, and strongly supports that most (if not all) CMEs have the MFR structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信