ARCH模型的SPEC模型选择算法:一个期权定价评估框架

Stavros Degiannakis, E. Xekalaki
{"title":"ARCH模型的SPEC模型选择算法:一个期权定价评估框架","authors":"Stavros Degiannakis, E. Xekalaki","doi":"10.1080/17446540701765258","DOIUrl":null,"url":null,"abstract":"A number of single ARCH model-based methods of predicting volatility are compared to Degiannakis and Xekalaki's (2005) poly-model standardized prediction error criterion (SPEC) algorithm method in terms of profits from trading actual options of the S&P500 index returns. The results show that traders using the SPEC for deciding which model's forecasts to use at any given point in time achieve the highest profits.","PeriodicalId":345744,"journal":{"name":"Applied Financial Economics Letters","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SPEC model selection algorithm for ARCH models: an options pricing evaluation framework\",\"authors\":\"Stavros Degiannakis, E. Xekalaki\",\"doi\":\"10.1080/17446540701765258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of single ARCH model-based methods of predicting volatility are compared to Degiannakis and Xekalaki's (2005) poly-model standardized prediction error criterion (SPEC) algorithm method in terms of profits from trading actual options of the S&P500 index returns. The results show that traders using the SPEC for deciding which model's forecasts to use at any given point in time achieve the highest profits.\",\"PeriodicalId\":345744,\"journal\":{\"name\":\"Applied Financial Economics Letters\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Financial Economics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17446540701765258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Financial Economics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17446540701765258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在交易标准普尔500指数实际期权收益方面,将一些基于单一ARCH模型的预测波动率方法与Degiannakis和Xekalaki(2005)的多模型标准化预测误差标准(SPEC)算法方法进行了比较。结果表明,交易者使用SPEC来决定在任何给定的时间点使用哪种模型的预测,可以获得最高的利润。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPEC model selection algorithm for ARCH models: an options pricing evaluation framework
A number of single ARCH model-based methods of predicting volatility are compared to Degiannakis and Xekalaki's (2005) poly-model standardized prediction error criterion (SPEC) algorithm method in terms of profits from trading actual options of the S&P500 index returns. The results show that traders using the SPEC for deciding which model's forecasts to use at any given point in time achieve the highest profits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信