{"title":"ARCH模型的SPEC模型选择算法:一个期权定价评估框架","authors":"Stavros Degiannakis, E. Xekalaki","doi":"10.1080/17446540701765258","DOIUrl":null,"url":null,"abstract":"A number of single ARCH model-based methods of predicting volatility are compared to Degiannakis and Xekalaki's (2005) poly-model standardized prediction error criterion (SPEC) algorithm method in terms of profits from trading actual options of the S&P500 index returns. The results show that traders using the SPEC for deciding which model's forecasts to use at any given point in time achieve the highest profits.","PeriodicalId":345744,"journal":{"name":"Applied Financial Economics Letters","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SPEC model selection algorithm for ARCH models: an options pricing evaluation framework\",\"authors\":\"Stavros Degiannakis, E. Xekalaki\",\"doi\":\"10.1080/17446540701765258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of single ARCH model-based methods of predicting volatility are compared to Degiannakis and Xekalaki's (2005) poly-model standardized prediction error criterion (SPEC) algorithm method in terms of profits from trading actual options of the S&P500 index returns. The results show that traders using the SPEC for deciding which model's forecasts to use at any given point in time achieve the highest profits.\",\"PeriodicalId\":345744,\"journal\":{\"name\":\"Applied Financial Economics Letters\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Financial Economics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17446540701765258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Financial Economics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17446540701765258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SPEC model selection algorithm for ARCH models: an options pricing evaluation framework
A number of single ARCH model-based methods of predicting volatility are compared to Degiannakis and Xekalaki's (2005) poly-model standardized prediction error criterion (SPEC) algorithm method in terms of profits from trading actual options of the S&P500 index returns. The results show that traders using the SPEC for deciding which model's forecasts to use at any given point in time achieve the highest profits.