匿名化时态数据

Ke Wang, Yabo Xu, R. C. Wong, A. Fu
{"title":"匿名化时态数据","authors":"Ke Wang, Yabo Xu, R. C. Wong, A. Fu","doi":"10.1109/ICDM.2010.96","DOIUrl":null,"url":null,"abstract":"Temporal data are time-critical in that the snapshot at each timestamp must be made available to researchers in a timely fashion. However, due to the limited data, each snapshot likely has a skewed distribution on sensitive values, which renders classical anonymization methods not possible. In this work, we propose the “reposition model” to allow a record to be published within a close proximity of original timestamp. We show that reposition over a small proximity of timestamp is sufficient for reducing the skewness of a snapshot, therefore, minimizing the impact on window queries. We formalize the optimal reposition problem and present a linear-time solution. The contribution of this work is that it enables classical methods on temporal data.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Anonymizing Temporal Data\",\"authors\":\"Ke Wang, Yabo Xu, R. C. Wong, A. Fu\",\"doi\":\"10.1109/ICDM.2010.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal data are time-critical in that the snapshot at each timestamp must be made available to researchers in a timely fashion. However, due to the limited data, each snapshot likely has a skewed distribution on sensitive values, which renders classical anonymization methods not possible. In this work, we propose the “reposition model” to allow a record to be published within a close proximity of original timestamp. We show that reposition over a small proximity of timestamp is sufficient for reducing the skewness of a snapshot, therefore, minimizing the impact on window queries. We formalize the optimal reposition problem and present a linear-time solution. The contribution of this work is that it enables classical methods on temporal data.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

时间数据是时间关键的,因为每个时间戳的快照必须及时提供给研究人员。然而,由于数据有限,每个快照在敏感值上的分布可能是倾斜的,这使得经典的匿名化方法不可能实现。在这项工作中,我们提出了“重新定位模型”,以允许记录在接近原始时间戳的范围内发布。我们表明,在时间戳的一个小范围内重新定位足以减少快照的偏度,因此,最大限度地减少对窗口查询的影响。我们形式化了最优重新定位问题,并给出了线性时间解。这项工作的贡献是,它使经典方法对时间数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anonymizing Temporal Data
Temporal data are time-critical in that the snapshot at each timestamp must be made available to researchers in a timely fashion. However, due to the limited data, each snapshot likely has a skewed distribution on sensitive values, which renders classical anonymization methods not possible. In this work, we propose the “reposition model” to allow a record to be published within a close proximity of original timestamp. We show that reposition over a small proximity of timestamp is sufficient for reducing the skewness of a snapshot, therefore, minimizing the impact on window queries. We formalize the optimal reposition problem and present a linear-time solution. The contribution of this work is that it enables classical methods on temporal data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信