{"title":"面向数据并行计算的稀疏数据表示","authors":"A. L. Cheung, A. Reeves","doi":"10.1109/SHPCC.1992.232633","DOIUrl":null,"url":null,"abstract":"Performance optimization has ben achieved by a transparent parallel sparse data representation in a data-parallel programming environment. In a sparse data representation, only the non-zero data elements of an array are stored and processed. The parallel sparse data representation is designed to efficiently utilize system resources on multicomputer systems for a broad class of problems; the main focus of this work is on the sparse situations that arise in dense data-parallel algorithms rather than the more traditional sparse linear algebra applications. A number of sparse data formats have been considered; one of these formats has been implemented in a high-level data-parallel programming environment called Paragon. Experimental results have been obtained with a distributed-memory multicomputer system.<<ETX>>","PeriodicalId":254515,"journal":{"name":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse data representation for data-parallel computation\",\"authors\":\"A. L. Cheung, A. Reeves\",\"doi\":\"10.1109/SHPCC.1992.232633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance optimization has ben achieved by a transparent parallel sparse data representation in a data-parallel programming environment. In a sparse data representation, only the non-zero data elements of an array are stored and processed. The parallel sparse data representation is designed to efficiently utilize system resources on multicomputer systems for a broad class of problems; the main focus of this work is on the sparse situations that arise in dense data-parallel algorithms rather than the more traditional sparse linear algebra applications. A number of sparse data formats have been considered; one of these formats has been implemented in a high-level data-parallel programming environment called Paragon. Experimental results have been obtained with a distributed-memory multicomputer system.<<ETX>>\",\"PeriodicalId\":254515,\"journal\":{\"name\":\"Proceedings Scalable High Performance Computing Conference SHPCC-92.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Scalable High Performance Computing Conference SHPCC-92.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SHPCC.1992.232633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHPCC.1992.232633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sparse data representation for data-parallel computation
Performance optimization has ben achieved by a transparent parallel sparse data representation in a data-parallel programming environment. In a sparse data representation, only the non-zero data elements of an array are stored and processed. The parallel sparse data representation is designed to efficiently utilize system resources on multicomputer systems for a broad class of problems; the main focus of this work is on the sparse situations that arise in dense data-parallel algorithms rather than the more traditional sparse linear algebra applications. A number of sparse data formats have been considered; one of these formats has been implemented in a high-level data-parallel programming environment called Paragon. Experimental results have been obtained with a distributed-memory multicomputer system.<>