用网络内计算训练类chatgpt模型

Shuhao Fu, Yong Liao, Pengyuan Zhou
{"title":"用网络内计算训练类chatgpt模型","authors":"Shuhao Fu, Yong Liao, Pengyuan Zhou","doi":"10.1145/3600061.3603136","DOIUrl":null,"url":null,"abstract":"ChatGPT shows the enormous potential of large language models (LLMs). These models can easily reach the size of billions of parameters and create training difficulties for the majority. We propose a paradigm to train LLMs using distributed in-network computation on routers. Our preliminary result shows that our design allows LLMs to be trained at a reasonable learning rate without demanding extensive GPU resources.","PeriodicalId":228934,"journal":{"name":"Proceedings of the 7th Asia-Pacific Workshop on Networking","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training ChatGPT-like Models with In-network Computation\",\"authors\":\"Shuhao Fu, Yong Liao, Pengyuan Zhou\",\"doi\":\"10.1145/3600061.3603136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ChatGPT shows the enormous potential of large language models (LLMs). These models can easily reach the size of billions of parameters and create training difficulties for the majority. We propose a paradigm to train LLMs using distributed in-network computation on routers. Our preliminary result shows that our design allows LLMs to be trained at a reasonable learning rate without demanding extensive GPU resources.\",\"PeriodicalId\":228934,\"journal\":{\"name\":\"Proceedings of the 7th Asia-Pacific Workshop on Networking\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th Asia-Pacific Workshop on Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3600061.3603136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th Asia-Pacific Workshop on Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3600061.3603136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ChatGPT显示了大型语言模型(llm)的巨大潜力。这些模型可以很容易地达到数十亿个参数的规模,并为大多数人带来训练困难。我们提出了一个在路由器上使用分布式网络内计算来训练llm的范例。我们的初步结果表明,我们的设计允许llm以合理的学习率进行训练,而不需要大量的GPU资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training ChatGPT-like Models with In-network Computation
ChatGPT shows the enormous potential of large language models (LLMs). These models can easily reach the size of billions of parameters and create training difficulties for the majority. We propose a paradigm to train LLMs using distributed in-network computation on routers. Our preliminary result shows that our design allows LLMs to be trained at a reasonable learning rate without demanding extensive GPU resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信