{"title":"无奇点光衰减","authors":"Cem Yuksel","doi":"10.1145/3388767.3407364","DOIUrl":null,"url":null,"abstract":"Point lights with an inverse-square attenuation function are commonly used in computer graphics. We present an alternative formulation of point light attenuation that treats point lights as simplified forms of spherical lights. This eliminates the singularity of the inverse-square light attenuation function and makes it easier to work with point lights in practice. We also present how the typical ad hoc modifications of the inverse-square formula can be improved based on our formulation.","PeriodicalId":368810,"journal":{"name":"Special Interest Group on Computer Graphics and Interactive Techniques Conference Talks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Point Light Attenuation Without Singularity\",\"authors\":\"Cem Yuksel\",\"doi\":\"10.1145/3388767.3407364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point lights with an inverse-square attenuation function are commonly used in computer graphics. We present an alternative formulation of point light attenuation that treats point lights as simplified forms of spherical lights. This eliminates the singularity of the inverse-square light attenuation function and makes it easier to work with point lights in practice. We also present how the typical ad hoc modifications of the inverse-square formula can be improved based on our formulation.\",\"PeriodicalId\":368810,\"journal\":{\"name\":\"Special Interest Group on Computer Graphics and Interactive Techniques Conference Talks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computer Graphics and Interactive Techniques Conference Talks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388767.3407364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computer Graphics and Interactive Techniques Conference Talks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388767.3407364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Point lights with an inverse-square attenuation function are commonly used in computer graphics. We present an alternative formulation of point light attenuation that treats point lights as simplified forms of spherical lights. This eliminates the singularity of the inverse-square light attenuation function and makes it easier to work with point lights in practice. We also present how the typical ad hoc modifications of the inverse-square formula can be improved based on our formulation.