配送公司客户订单关联规则的识别

Armin Nogo, E. Žunić, D. Donko
{"title":"配送公司客户订单关联规则的识别","authors":"Armin Nogo, E. Žunić, D. Donko","doi":"10.1109/EUROCON.2019.8861951","DOIUrl":null,"url":null,"abstract":"The identification of association rules is the problem of finding associations between different items in the same transactions. In this paper, performance comparison of different variants of Apriori, FP-Growth and ECLAT algorithms was performed over the real transactional data set of the distribution company by using R programming language and its appropriate packages, and the results obtained are later on explained. Then, the identification and visualization of the association rules of the said real data set was performed.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of association rules in orders of distribution companies’ clients\",\"authors\":\"Armin Nogo, E. Žunić, D. Donko\",\"doi\":\"10.1109/EUROCON.2019.8861951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of association rules is the problem of finding associations between different items in the same transactions. In this paper, performance comparison of different variants of Apriori, FP-Growth and ECLAT algorithms was performed over the real transactional data set of the distribution company by using R programming language and its appropriate packages, and the results obtained are later on explained. Then, the identification and visualization of the association rules of the said real data set was performed.\",\"PeriodicalId\":232097,\"journal\":{\"name\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2019.8861951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关联规则的识别是查找相同事务中不同项之间的关联的问题。本文使用R编程语言及其相应的软件包,在分销公司的真实交易数据集上对Apriori、FP-Growth和ECLAT算法的不同变体进行了性能比较,并对所得结果进行了说明。然后,对该真实数据集的关联规则进行识别和可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of association rules in orders of distribution companies’ clients
The identification of association rules is the problem of finding associations between different items in the same transactions. In this paper, performance comparison of different variants of Apriori, FP-Growth and ECLAT algorithms was performed over the real transactional data set of the distribution company by using R programming language and its appropriate packages, and the results obtained are later on explained. Then, the identification and visualization of the association rules of the said real data set was performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信