单目ORB-SLAM在水下场景中的应用

Franco Hidalgo, Chris Kahlefendt, T. Bräunl
{"title":"单目ORB-SLAM在水下场景中的应用","authors":"Franco Hidalgo, Chris Kahlefendt, T. Bräunl","doi":"10.1109/OCEANSKOBE.2018.8559435","DOIUrl":null,"url":null,"abstract":"This paper presents an experimental evaluation of monocular ORB-SLAM applied to underwater scenarios. It is investigated as an alternative SLAM method with minimal instumentation compared to other approaches that integrate different sensors such as inertial and acoustic sensors. ORB-SLAM creates a 3D map based on image frames and estimates the position of the robot by using a feature-based front-end and a graph-based back-end. The performance of ORB-SLAM is evaluated through experiments in different settings with varying lighting, visibility and water dynamics. Results show good performance given the right conditions and demonstrate that ORB-SLAM can work well in the underwater environment. Based on our findings the paper outlines possible enhancements which should further improve on the algorithms performance.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"50 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Monocular ORB-SLAM Application in Underwater Scenarios\",\"authors\":\"Franco Hidalgo, Chris Kahlefendt, T. Bräunl\",\"doi\":\"10.1109/OCEANSKOBE.2018.8559435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an experimental evaluation of monocular ORB-SLAM applied to underwater scenarios. It is investigated as an alternative SLAM method with minimal instumentation compared to other approaches that integrate different sensors such as inertial and acoustic sensors. ORB-SLAM creates a 3D map based on image frames and estimates the position of the robot by using a feature-based front-end and a graph-based back-end. The performance of ORB-SLAM is evaluated through experiments in different settings with varying lighting, visibility and water dynamics. Results show good performance given the right conditions and demonstrate that ORB-SLAM can work well in the underwater environment. Based on our findings the paper outlines possible enhancements which should further improve on the algorithms performance.\",\"PeriodicalId\":441405,\"journal\":{\"name\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"volume\":\"50 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSKOBE.2018.8559435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8559435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文对单目ORB-SLAM在水下场景中的应用进行了实验评价。与其他集成不同传感器(如惯性传感器和声学传感器)的方法相比,该方法作为一种替代SLAM方法进行了研究。ORB-SLAM基于图像帧创建3D地图,并使用基于特征的前端和基于图形的后端来估计机器人的位置。在不同的光照、能见度和水动力条件下,通过实验对ORB-SLAM的性能进行了评估。实验结果表明,在适当的条件下,ORB-SLAM具有良好的水下工作性能。基于我们的发现,本文概述了可能的改进,应该进一步提高算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monocular ORB-SLAM Application in Underwater Scenarios
This paper presents an experimental evaluation of monocular ORB-SLAM applied to underwater scenarios. It is investigated as an alternative SLAM method with minimal instumentation compared to other approaches that integrate different sensors such as inertial and acoustic sensors. ORB-SLAM creates a 3D map based on image frames and estimates the position of the robot by using a feature-based front-end and a graph-based back-end. The performance of ORB-SLAM is evaluated through experiments in different settings with varying lighting, visibility and water dynamics. Results show good performance given the right conditions and demonstrate that ORB-SLAM can work well in the underwater environment. Based on our findings the paper outlines possible enhancements which should further improve on the algorithms performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信