地理分布式云数据存储中的前瞻性、成本意识、优化的数据复制策略

T. Hsu, A. Kshemkalyani
{"title":"地理分布式云数据存储中的前瞻性、成本意识、优化的数据复制策略","authors":"T. Hsu, A. Kshemkalyani","doi":"10.1145/3344341.3368799","DOIUrl":null,"url":null,"abstract":"Geo-replicated cloud datastores adopt the replication methodology by placing multiple data replicas at suitable storage zones. This can provide reliable services to customers with high availability, low access latency, low system cost, and decreased bandwidth consumption. However, this has the potential to increase the whole system overheads of maintaining more resource replicas, and to also degrade the system utilization due to unnecessary storage space cost. Thus, it is important to determine the suitable replication zones on-the-fly to increase the availability of data resources and maximize the system utilization. Specifically, it is essential to determine the appropriate number of replicas for different data resources at each zone in a particular time interval. We propose Cost Optimization Replica Placement (CORP) algorithms to enable state-of-art proactive provisioning replication of data resources based on an one-step look-ahead workload behavior pattern forecast over the distributed data storage infrastructure using statistical techniques. The experimental results show the cost effectiveness of the proposed replication strategies.","PeriodicalId":261870,"journal":{"name":"Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Proactive, Cost-aware, Optimized Data Replication Strategy in Geo-distributed Cloud Datastores\",\"authors\":\"T. Hsu, A. Kshemkalyani\",\"doi\":\"10.1145/3344341.3368799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geo-replicated cloud datastores adopt the replication methodology by placing multiple data replicas at suitable storage zones. This can provide reliable services to customers with high availability, low access latency, low system cost, and decreased bandwidth consumption. However, this has the potential to increase the whole system overheads of maintaining more resource replicas, and to also degrade the system utilization due to unnecessary storage space cost. Thus, it is important to determine the suitable replication zones on-the-fly to increase the availability of data resources and maximize the system utilization. Specifically, it is essential to determine the appropriate number of replicas for different data resources at each zone in a particular time interval. We propose Cost Optimization Replica Placement (CORP) algorithms to enable state-of-art proactive provisioning replication of data resources based on an one-step look-ahead workload behavior pattern forecast over the distributed data storage infrastructure using statistical techniques. The experimental results show the cost effectiveness of the proposed replication strategies.\",\"PeriodicalId\":261870,\"journal\":{\"name\":\"Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3344341.3368799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3344341.3368799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

地理复制云数据存储通过在合适的存储区域放置多个数据副本来采用复制方法。这样可以为客户提供高可用性、低访问延迟、低系统成本和低带宽消耗的可靠服务。但是,这有可能增加维护更多资源副本的整个系统开销,并且由于不必要的存储空间成本而降低系统利用率。因此,确定合适的动态复制区域对于提高数据资源的可用性和最大化系统利用率非常重要。具体来说,必须确定在特定时间间隔内每个区域中不同数据资源的适当副本数量。我们提出成本优化副本放置(Cost Optimization Replica Placement, CORP)算法,利用统计技术,基于对分布式数据存储基础设施的一步前瞻性工作负载行为模式预测,实现最先进的数据资源主动提供复制。实验结果表明了所提出的复制策略的成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Proactive, Cost-aware, Optimized Data Replication Strategy in Geo-distributed Cloud Datastores
Geo-replicated cloud datastores adopt the replication methodology by placing multiple data replicas at suitable storage zones. This can provide reliable services to customers with high availability, low access latency, low system cost, and decreased bandwidth consumption. However, this has the potential to increase the whole system overheads of maintaining more resource replicas, and to also degrade the system utilization due to unnecessary storage space cost. Thus, it is important to determine the suitable replication zones on-the-fly to increase the availability of data resources and maximize the system utilization. Specifically, it is essential to determine the appropriate number of replicas for different data resources at each zone in a particular time interval. We propose Cost Optimization Replica Placement (CORP) algorithms to enable state-of-art proactive provisioning replication of data resources based on an one-step look-ahead workload behavior pattern forecast over the distributed data storage infrastructure using statistical techniques. The experimental results show the cost effectiveness of the proposed replication strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信