基于可操作可扩展Takagi-Sugeno模糊退化模型的粒子滤波堵塞预测

T. Sreenuch, Faisal Khan, J. Li
{"title":"基于可操作可扩展Takagi-Sugeno模糊退化模型的粒子滤波堵塞预测","authors":"T. Sreenuch, Faisal Khan, J. Li","doi":"10.2514/1.I010385","DOIUrl":null,"url":null,"abstract":"In this paper, filter clogging is used as an aerospace integrated vehicle health management case study to demonstrate the proposed prognostic approach. The focus of this paper is on a scalable data-driven degradation model and how it can improve the remaining useful life prediction performance in condition monitoring of a filter component. Instead of overall fitting of the data, a degradation pattern (a parameterized Takagi–Sugeno fuzzy model) is learned from experimental data collected under a range of operating conditions in the proposed approach. The parameter allows the model to scale to fit different degradation profiles, and hence a more accurate model. In real-time condition monitoring, the degradation and model parameter are simultaneously estimated online based on noisy measurement updates using a particle filter. The estimation results show close tracking of the degradation state and good convergence of the model parameter to its real value. The remaining useful life prediction results show low ...","PeriodicalId":179117,"journal":{"name":"J. Aerosp. Inf. Syst.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Particle Filter with Operational-Scalable Takagi-Sugeno Fuzzy Degradation Model for Filter-Clogging Prognosis\",\"authors\":\"T. Sreenuch, Faisal Khan, J. Li\",\"doi\":\"10.2514/1.I010385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, filter clogging is used as an aerospace integrated vehicle health management case study to demonstrate the proposed prognostic approach. The focus of this paper is on a scalable data-driven degradation model and how it can improve the remaining useful life prediction performance in condition monitoring of a filter component. Instead of overall fitting of the data, a degradation pattern (a parameterized Takagi–Sugeno fuzzy model) is learned from experimental data collected under a range of operating conditions in the proposed approach. The parameter allows the model to scale to fit different degradation profiles, and hence a more accurate model. In real-time condition monitoring, the degradation and model parameter are simultaneously estimated online based on noisy measurement updates using a particle filter. The estimation results show close tracking of the degradation state and good convergence of the model parameter to its real value. The remaining useful life prediction results show low ...\",\"PeriodicalId\":179117,\"journal\":{\"name\":\"J. Aerosp. Inf. Syst.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Aerosp. Inf. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.I010385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Aerosp. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.I010385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文以航空航天综合飞行器健康管理中的过滤器堵塞为例,对所提出的预测方法进行了验证。本文的重点是一个可扩展的数据驱动退化模型,以及它如何在过滤器组件的状态监测中提高剩余使用寿命预测性能。该方法不是对数据进行整体拟合,而是从一系列操作条件下收集的实验数据中学习退化模式(参数化的Takagi-Sugeno模糊模型)。该参数允许模型缩放以适应不同的退化概况,因此是一个更准确的模型。在实时状态监测中,利用粒子滤波对噪声测量值进行更新,在线同时估计退化和模型参数。估计结果表明,模型退化状态跟踪良好,模型参数收敛性好。剩余使用寿命预测结果表明:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Filter with Operational-Scalable Takagi-Sugeno Fuzzy Degradation Model for Filter-Clogging Prognosis
In this paper, filter clogging is used as an aerospace integrated vehicle health management case study to demonstrate the proposed prognostic approach. The focus of this paper is on a scalable data-driven degradation model and how it can improve the remaining useful life prediction performance in condition monitoring of a filter component. Instead of overall fitting of the data, a degradation pattern (a parameterized Takagi–Sugeno fuzzy model) is learned from experimental data collected under a range of operating conditions in the proposed approach. The parameter allows the model to scale to fit different degradation profiles, and hence a more accurate model. In real-time condition monitoring, the degradation and model parameter are simultaneously estimated online based on noisy measurement updates using a particle filter. The estimation results show close tracking of the degradation state and good convergence of the model parameter to its real value. The remaining useful life prediction results show low ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信