{"title":"克罗内克结构字典的鉴定:一个渐近分析","authors":"Z. Shakeri, A. Sarwate, W. Bajwa","doi":"10.1109/CAMSAP.2017.8313163","DOIUrl":null,"url":null,"abstract":"The focus of this work is on derivation of conditions for asymptotic recovery of Kronecker-structured dictionaries underlying second-order tensor data. Given second-order tensor observations (equivalently, matrix-valued data samples) that are generated using a Kronecker-structured dictionary and sparse coefficient tensors, conditions on the dictionary and coefficient distribution are derived that enable asymptotic recovery of the individual coordinate dictionaries comprising the Kronecker dictionary within a local neighborhood of the true model. These conditions constitute the first step towards understanding the sample complexity of Kronecker-structured dictionary learning for second- and higher-order tensor data.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Identification of kronecker-structured dictionaries: An asymptotic analysis\",\"authors\":\"Z. Shakeri, A. Sarwate, W. Bajwa\",\"doi\":\"10.1109/CAMSAP.2017.8313163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this work is on derivation of conditions for asymptotic recovery of Kronecker-structured dictionaries underlying second-order tensor data. Given second-order tensor observations (equivalently, matrix-valued data samples) that are generated using a Kronecker-structured dictionary and sparse coefficient tensors, conditions on the dictionary and coefficient distribution are derived that enable asymptotic recovery of the individual coordinate dictionaries comprising the Kronecker dictionary within a local neighborhood of the true model. These conditions constitute the first step towards understanding the sample complexity of Kronecker-structured dictionary learning for second- and higher-order tensor data.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of kronecker-structured dictionaries: An asymptotic analysis
The focus of this work is on derivation of conditions for asymptotic recovery of Kronecker-structured dictionaries underlying second-order tensor data. Given second-order tensor observations (equivalently, matrix-valued data samples) that are generated using a Kronecker-structured dictionary and sparse coefficient tensors, conditions on the dictionary and coefficient distribution are derived that enable asymptotic recovery of the individual coordinate dictionaries comprising the Kronecker dictionary within a local neighborhood of the true model. These conditions constitute the first step towards understanding the sample complexity of Kronecker-structured dictionary learning for second- and higher-order tensor data.