通过立方体周期阵列的流动的尺度解析模拟

M. Elkhoury, Amina Elcheik
{"title":"通过立方体周期阵列的流动的尺度解析模拟","authors":"M. Elkhoury, Amina Elcheik","doi":"10.2495/AFM180161","DOIUrl":null,"url":null,"abstract":"Previous Scale-Resolving Simulation studies of flow over urban-like obstacles uses Large Eddy Simulation and course grids to reduce computational cost. However, the coarser the mesh the more reliance on the subgrid scale model to accurately account for scales associated with high wavenumbers. Furthermore, when high-resolution simulations are of importance, such as the transport of urban contaminants, mesh refinement becomes necessary. Often clustering of mesh cells produce errors at grid-refinement interfaces, mainly on the fine side of the mesh when it is located upstream of the coarse one. Three scale-resolving turbulence models, the One-Equation Scale-Adaptive Simulation (One-Eq.SAS), the Shear Stress Transport-Improved Delayed Detached Eddy Simulation (SST-IDDES), and the Algebraic Wall-Modelled Large Eddy Simulation (WMLES) models are utilized to assess their effect on the accuracy of the results when applied on both coarse and mesh-refined grids. The selection of these models was first based on the computational cost where the WMLES is the cheapest to solve since it involves no partial differential equation, while the SST-IDDES model is computationally the most expensive. Simulations are carried out on a relevant and complex test case of flow through a periodic array of cubes. The results reveal that models that do not inherent grid scale parameters in their formulation perform best in flows with global instabilities.","PeriodicalId":261351,"journal":{"name":"Advances in Fluid Mechanics XII","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SCALE-RESOLVING SIMULATION OF FLOW THROUGH A PERIODIC ARRAY OF CUBES\",\"authors\":\"M. Elkhoury, Amina Elcheik\",\"doi\":\"10.2495/AFM180161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous Scale-Resolving Simulation studies of flow over urban-like obstacles uses Large Eddy Simulation and course grids to reduce computational cost. However, the coarser the mesh the more reliance on the subgrid scale model to accurately account for scales associated with high wavenumbers. Furthermore, when high-resolution simulations are of importance, such as the transport of urban contaminants, mesh refinement becomes necessary. Often clustering of mesh cells produce errors at grid-refinement interfaces, mainly on the fine side of the mesh when it is located upstream of the coarse one. Three scale-resolving turbulence models, the One-Equation Scale-Adaptive Simulation (One-Eq.SAS), the Shear Stress Transport-Improved Delayed Detached Eddy Simulation (SST-IDDES), and the Algebraic Wall-Modelled Large Eddy Simulation (WMLES) models are utilized to assess their effect on the accuracy of the results when applied on both coarse and mesh-refined grids. The selection of these models was first based on the computational cost where the WMLES is the cheapest to solve since it involves no partial differential equation, while the SST-IDDES model is computationally the most expensive. Simulations are carried out on a relevant and complex test case of flow through a periodic array of cubes. The results reveal that models that do not inherent grid scale parameters in their formulation perform best in flows with global instabilities.\",\"PeriodicalId\":261351,\"journal\":{\"name\":\"Advances in Fluid Mechanics XII\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Fluid Mechanics XII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/AFM180161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Fluid Mechanics XII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/AFM180161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

以往的城市障碍物流动的尺度分辨模拟研究采用大涡模拟和路径网格来减少计算成本。然而,网格越粗,越依赖于子网格尺度模型来准确地解释与高波数相关的尺度。此外,当高分辨率模拟很重要时,例如城市污染物的运输,网格细化就变得必要。网格单元的聚类通常会在网格细化界面产生误差,当网格位于粗网格的上游时,主要是在网格的细侧。利用三种尺度分辨湍流模型,即单方程尺度自适应模拟(One-Eq.SAS)、剪切应力传输改进延迟分离涡模拟(SST-IDDES)和代数壁面模拟大涡模拟(WMLES)模型,评估了它们在粗网格和网格精细化网格上对结果精度的影响。这些模型的选择首先是基于计算成本,其中WMLES的求解成本最低,因为它不涉及偏微分方程,而SST-IDDES模型的计算成本最高。在一个相关的、复杂的流动测试用例上进行了仿真。结果表明,不包含固有网格尺度参数的模型在具有全局不稳定性的流动中表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCALE-RESOLVING SIMULATION OF FLOW THROUGH A PERIODIC ARRAY OF CUBES
Previous Scale-Resolving Simulation studies of flow over urban-like obstacles uses Large Eddy Simulation and course grids to reduce computational cost. However, the coarser the mesh the more reliance on the subgrid scale model to accurately account for scales associated with high wavenumbers. Furthermore, when high-resolution simulations are of importance, such as the transport of urban contaminants, mesh refinement becomes necessary. Often clustering of mesh cells produce errors at grid-refinement interfaces, mainly on the fine side of the mesh when it is located upstream of the coarse one. Three scale-resolving turbulence models, the One-Equation Scale-Adaptive Simulation (One-Eq.SAS), the Shear Stress Transport-Improved Delayed Detached Eddy Simulation (SST-IDDES), and the Algebraic Wall-Modelled Large Eddy Simulation (WMLES) models are utilized to assess their effect on the accuracy of the results when applied on both coarse and mesh-refined grids. The selection of these models was first based on the computational cost where the WMLES is the cheapest to solve since it involves no partial differential equation, while the SST-IDDES model is computationally the most expensive. Simulations are carried out on a relevant and complex test case of flow through a periodic array of cubes. The results reveal that models that do not inherent grid scale parameters in their formulation perform best in flows with global instabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信