非高斯有界噪声激励下VanDerPol振荡器的分析

W. Yi, Jihong Song
{"title":"非高斯有界噪声激励下VanDerPol振荡器的分析","authors":"W. Yi, Jihong Song","doi":"10.1109/ICNC.2012.6234752","DOIUrl":null,"url":null,"abstract":"This paper research the non-linear system VanDerPol-Duffing oscillator behavior under the excitation of weak signal and non-Gaussion bounded noise based on random Melnikov methods, we find out the non-Gaussion bounded noise has little effect on the chaotic system, as for the bigger wiener process parameters, the gate value of the chaotic movement will be more bigger with the strength of non-Gaussion bounded noise. This paper researches the chaotic movement character under the excitation of weak signal and non-Gaussion bounded noise.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of VanDerPol oscillator under excitation of non-Gaussian bounded noise\",\"authors\":\"W. Yi, Jihong Song\",\"doi\":\"10.1109/ICNC.2012.6234752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper research the non-linear system VanDerPol-Duffing oscillator behavior under the excitation of weak signal and non-Gaussion bounded noise based on random Melnikov methods, we find out the non-Gaussion bounded noise has little effect on the chaotic system, as for the bigger wiener process parameters, the gate value of the chaotic movement will be more bigger with the strength of non-Gaussion bounded noise. This paper researches the chaotic movement character under the excitation of weak signal and non-Gaussion bounded noise.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于随机Melnikov方法研究了弱信号和非高斯有界噪声激励下的非线性系统VanDerPol-Duffing振子行为,发现非高斯有界噪声对混沌系统的影响很小,当维纳过程参数越大,非高斯有界噪声的强度越大,混沌运动的门值越大。研究了在弱信号和非高斯有界噪声激励下的混沌运动特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of VanDerPol oscillator under excitation of non-Gaussian bounded noise
This paper research the non-linear system VanDerPol-Duffing oscillator behavior under the excitation of weak signal and non-Gaussion bounded noise based on random Melnikov methods, we find out the non-Gaussion bounded noise has little effect on the chaotic system, as for the bigger wiener process parameters, the gate value of the chaotic movement will be more bigger with the strength of non-Gaussion bounded noise. This paper researches the chaotic movement character under the excitation of weak signal and non-Gaussion bounded noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信