一种新的基于分层小波的模式分析与综合框架

C. Scott, R. Nowak
{"title":"一种新的基于分层小波的模式分析与综合框架","authors":"C. Scott, R. Nowak","doi":"10.1109/IAI.2000.839608","DOIUrl":null,"url":null,"abstract":"We present a wavelet-based framework for modeling patterns in digital images. The wavelet coefficients of the underlying pattern template are modeled as independent Gaussian or Gaussian mixture random variables. Variations in pose and location of the pattern are accounted for by a finite collection of uniformly distributed transformations. The observation noise is assumed to be IID Gaussian. This hierarchical framework induces a statistical image model that can be used to synthesize instances of pattern observations. The underlying pattern, which is generally unknown, can be inferred from training data by means of an iterative alternating-maximization algorithm. This learning algorithm automatically infers a pattern template with a sparse wavelet representation. We can further promote an efficient representation by modeling the wavelet coefficients with a Gaussian mixture and placing a penalty on the number of \"high\" states.","PeriodicalId":224112,"journal":{"name":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel hierarchical wavelet-based framework for pattern analysis and synthesis\",\"authors\":\"C. Scott, R. Nowak\",\"doi\":\"10.1109/IAI.2000.839608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a wavelet-based framework for modeling patterns in digital images. The wavelet coefficients of the underlying pattern template are modeled as independent Gaussian or Gaussian mixture random variables. Variations in pose and location of the pattern are accounted for by a finite collection of uniformly distributed transformations. The observation noise is assumed to be IID Gaussian. This hierarchical framework induces a statistical image model that can be used to synthesize instances of pattern observations. The underlying pattern, which is generally unknown, can be inferred from training data by means of an iterative alternating-maximization algorithm. This learning algorithm automatically infers a pattern template with a sparse wavelet representation. We can further promote an efficient representation by modeling the wavelet coefficients with a Gaussian mixture and placing a penalty on the number of \\\"high\\\" states.\",\"PeriodicalId\":224112,\"journal\":{\"name\":\"4th IEEE Southwest Symposium on Image Analysis and Interpretation\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th IEEE Southwest Symposium on Image Analysis and Interpretation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI.2000.839608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2000.839608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种基于小波的数字图像模式建模框架。底层模式模板的小波系数被建模为独立的高斯或高斯混合随机变量。模式的姿态和位置的变化由均匀分布的有限变换集合来解释。假设观测噪声为IID高斯噪声。这种分层框架产生一个统计图像模型,该模型可用于综合模式观察的实例。底层模式通常是未知的,可以通过迭代交替最大化算法从训练数据中推断出来。该学习算法通过稀疏小波表示自动推断出模式模板。我们可以通过用高斯混合对小波系数进行建模,并对“高”状态的数量进行惩罚,从而进一步促进有效的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel hierarchical wavelet-based framework for pattern analysis and synthesis
We present a wavelet-based framework for modeling patterns in digital images. The wavelet coefficients of the underlying pattern template are modeled as independent Gaussian or Gaussian mixture random variables. Variations in pose and location of the pattern are accounted for by a finite collection of uniformly distributed transformations. The observation noise is assumed to be IID Gaussian. This hierarchical framework induces a statistical image model that can be used to synthesize instances of pattern observations. The underlying pattern, which is generally unknown, can be inferred from training data by means of an iterative alternating-maximization algorithm. This learning algorithm automatically infers a pattern template with a sparse wavelet representation. We can further promote an efficient representation by modeling the wavelet coefficients with a Gaussian mixture and placing a penalty on the number of "high" states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信