朴素贝叶斯与逻辑回归:理论、实现和实验验证

T. Bhowmik
{"title":"朴素贝叶斯与逻辑回归:理论、实现和实验验证","authors":"T. Bhowmik","doi":"10.4114/INTARTIF.VOL18ISS56PP14-30","DOIUrl":null,"url":null,"abstract":"This article presents the theoretical derivation as well as practical steps for implementing Naive Bayes (NB) and Logistic Regression (LR) classifiers. A generative learning under Gaussian Naive Bayes assumption and two discriminative learning techniques based on gradient ascent and Newton-Raphson methods are described to estimate the parameters of LR. Some limitation of learning techniques and implementation issues are discussed as well. A set of experiments are performed for both the classifiers under different learning circumstances and their performances are compared. From the experiments, it is observed that LR learning with gradient ascent technique outperforms general NB classifier. However, under Gaussian Naive Bayes assumption, both classifiers NB and LR perform similar.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Naive Bayes vs Logistic Regression: Theory, Implementation and Experimental Validation\",\"authors\":\"T. Bhowmik\",\"doi\":\"10.4114/INTARTIF.VOL18ISS56PP14-30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the theoretical derivation as well as practical steps for implementing Naive Bayes (NB) and Logistic Regression (LR) classifiers. A generative learning under Gaussian Naive Bayes assumption and two discriminative learning techniques based on gradient ascent and Newton-Raphson methods are described to estimate the parameters of LR. Some limitation of learning techniques and implementation issues are discussed as well. A set of experiments are performed for both the classifiers under different learning circumstances and their performances are compared. From the experiments, it is observed that LR learning with gradient ascent technique outperforms general NB classifier. However, under Gaussian Naive Bayes assumption, both classifiers NB and LR perform similar.\",\"PeriodicalId\":176050,\"journal\":{\"name\":\"Inteligencia Artif.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artif.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/INTARTIF.VOL18ISS56PP14-30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/INTARTIF.VOL18ISS56PP14-30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文介绍了实现朴素贝叶斯(NB)和逻辑回归(LR)分类器的理论推导和实际步骤。描述了高斯朴素贝叶斯假设下的生成学习和基于梯度上升和牛顿-拉夫森方法的两种判别学习技术来估计LR的参数。讨论了学习技术的局限性和实现问题。对两种分类器在不同的学习环境下进行了实验,并对其性能进行了比较。从实验中可以看出,采用梯度上升技术的LR学习优于一般NB分类器。然而,在高斯朴素贝叶斯假设下,分类器NB和LR的表现相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Naive Bayes vs Logistic Regression: Theory, Implementation and Experimental Validation
This article presents the theoretical derivation as well as practical steps for implementing Naive Bayes (NB) and Logistic Regression (LR) classifiers. A generative learning under Gaussian Naive Bayes assumption and two discriminative learning techniques based on gradient ascent and Newton-Raphson methods are described to estimate the parameters of LR. Some limitation of learning techniques and implementation issues are discussed as well. A set of experiments are performed for both the classifiers under different learning circumstances and their performances are compared. From the experiments, it is observed that LR learning with gradient ascent technique outperforms general NB classifier. However, under Gaussian Naive Bayes assumption, both classifiers NB and LR perform similar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信