基于知识的lambda噬菌体调节作用模拟

T. Shimada, M. Hagiya, M. Arita, S. Nishizaki, C. Tan
{"title":"基于知识的lambda噬菌体调节作用模拟","authors":"T. Shimada, M. Hagiya, M. Arita, S. Nishizaki, C. Tan","doi":"10.1109/INBS.1995.404274","DOIUrl":null,"url":null,"abstract":"We have developed a knowledge-based, discrete-event simulation system to simulate proteins-regulated genetic action in lambda phage. Lambda phage is a kind of virus which infects Escherichia coli (E. Coli). Specifically, we simulate the decision between two developmental pathways, that is, lytic growth and lysogenic growth on such conditions as mutation. The novelty of this work is the employment of two different levels of abstraction in a genetic model for the purpose of achieving greater precision. Our model is composed of a roughly abstracted level for the noncritical parts which constitute most parts of our model, and a precisely abstracted level for the critical parts. In the former level, our model is a discrete-event simulation in qualitative representation on a knowledge-based system. In the latter level, it is based on reaction formulae in quantitative representation.<<ETX>>","PeriodicalId":423954,"journal":{"name":"Proceedings First International Symposium on Intelligence in Neural and Biological Systems. INBS'95","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Knowledge-based simulation of regulatory action in lambda phage\",\"authors\":\"T. Shimada, M. Hagiya, M. Arita, S. Nishizaki, C. Tan\",\"doi\":\"10.1109/INBS.1995.404274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a knowledge-based, discrete-event simulation system to simulate proteins-regulated genetic action in lambda phage. Lambda phage is a kind of virus which infects Escherichia coli (E. Coli). Specifically, we simulate the decision between two developmental pathways, that is, lytic growth and lysogenic growth on such conditions as mutation. The novelty of this work is the employment of two different levels of abstraction in a genetic model for the purpose of achieving greater precision. Our model is composed of a roughly abstracted level for the noncritical parts which constitute most parts of our model, and a precisely abstracted level for the critical parts. In the former level, our model is a discrete-event simulation in qualitative representation on a knowledge-based system. In the latter level, it is based on reaction formulae in quantitative representation.<<ETX>>\",\"PeriodicalId\":423954,\"journal\":{\"name\":\"Proceedings First International Symposium on Intelligence in Neural and Biological Systems. INBS'95\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings First International Symposium on Intelligence in Neural and Biological Systems. INBS'95\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INBS.1995.404274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings First International Symposium on Intelligence in Neural and Biological Systems. INBS'95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INBS.1995.404274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们已经开发了一个基于知识的,离散事件模拟系统来模拟蛋白质调节的遗传作用在lambda噬菌体。Lambda噬菌体是一种感染大肠杆菌(E. coli)的病毒。具体来说,我们模拟了在突变等条件下两种发育途径,即溶解性生长和溶原性生长之间的决策。这项工作的新颖之处在于,为了达到更高的精度,在遗传模型中使用了两个不同层次的抽象。该模型由非关键部分的粗略抽象层和关键部分的精确抽象层组成,非关键部分构成了模型的大部分。在前一个层次上,我们的模型是基于知识系统的离散事件模拟的定性表示。在后一级,它是基于定量表示的反应公式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge-based simulation of regulatory action in lambda phage
We have developed a knowledge-based, discrete-event simulation system to simulate proteins-regulated genetic action in lambda phage. Lambda phage is a kind of virus which infects Escherichia coli (E. Coli). Specifically, we simulate the decision between two developmental pathways, that is, lytic growth and lysogenic growth on such conditions as mutation. The novelty of this work is the employment of two different levels of abstraction in a genetic model for the purpose of achieving greater precision. Our model is composed of a roughly abstracted level for the noncritical parts which constitute most parts of our model, and a precisely abstracted level for the critical parts. In the former level, our model is a discrete-event simulation in qualitative representation on a knowledge-based system. In the latter level, it is based on reaction formulae in quantitative representation.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信