IBM Cell处理器上实时并行遗传算子的设计与实现

P. Comte
{"title":"IBM Cell处理器上实时并行遗传算子的设计与实现","authors":"P. Comte","doi":"10.1145/1569901.1596275","DOIUrl":null,"url":null,"abstract":"We present a set of single-core designed parallel SIMD Genetic Algorithm (GA) operators aimed at increasing computational speed of genetic algorithms. We use a discrete-valued chromosome representation. The explored operators include: single gene mutation, uniform crossover and a fitness evaluation function. We discuss their low-level hardware implementations on the Cell Processor. We use the Knapsack problem as a proof of concept, demonstrating performances of our operators. We measure the scalability in terms of generations per second. Using the architecture of the Cell Processor and a static population size of 648 individuals, we achieved 11.6 million generations per second on one Synergetic Processing Element (SPE) core for a problem size n = 8 and 9.5 million generations per second for a problem size n = 16. Generality for a problem size n multiple of 8 is also shown. Executing six independent concurrent GA runs, one per SPE core, allows for a rough overall estimate of 70 million generations per second and 57 million generations per second for problem sizes of n = 8 and n = 16 respectively.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design & Implementation of Real-time Parallel GA Operators on the IBM Cell Processor\",\"authors\":\"P. Comte\",\"doi\":\"10.1145/1569901.1596275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a set of single-core designed parallel SIMD Genetic Algorithm (GA) operators aimed at increasing computational speed of genetic algorithms. We use a discrete-valued chromosome representation. The explored operators include: single gene mutation, uniform crossover and a fitness evaluation function. We discuss their low-level hardware implementations on the Cell Processor. We use the Knapsack problem as a proof of concept, demonstrating performances of our operators. We measure the scalability in terms of generations per second. Using the architecture of the Cell Processor and a static population size of 648 individuals, we achieved 11.6 million generations per second on one Synergetic Processing Element (SPE) core for a problem size n = 8 and 9.5 million generations per second for a problem size n = 16. Generality for a problem size n multiple of 8 is also shown. Executing six independent concurrent GA runs, one per SPE core, allows for a rough overall estimate of 70 million generations per second and 57 million generations per second for problem sizes of n = 8 and n = 16 respectively.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1596275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1596275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高遗传算法的计算速度,提出了一套单核设计的并行SIMD遗传算法算子。我们使用离散值染色体表示。所探索的算子包括:单基因突变、均匀交叉和适应度评价函数。我们讨论了它们在Cell Processor上的底层硬件实现。我们使用背包问题作为概念证明,展示了我们的算子的性能。我们以每秒代数来衡量可伸缩性。使用Cell Processor的体系结构和648个个体的静态种群大小,对于问题大小n = 8,我们在一个协同处理元素(SPE)核心上实现了每秒1160万代,对于问题大小n = 16,我们实现了每秒950万代。对于大小为8的n倍的问题,也显示了通用性。执行6个独立的并发GA运行,每个SPE内核运行一次,对于问题大小分别为n = 8和n = 16的情况,可以实现每秒7000万代和5700万代的粗略总体估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design & Implementation of Real-time Parallel GA Operators on the IBM Cell Processor
We present a set of single-core designed parallel SIMD Genetic Algorithm (GA) operators aimed at increasing computational speed of genetic algorithms. We use a discrete-valued chromosome representation. The explored operators include: single gene mutation, uniform crossover and a fitness evaluation function. We discuss their low-level hardware implementations on the Cell Processor. We use the Knapsack problem as a proof of concept, demonstrating performances of our operators. We measure the scalability in terms of generations per second. Using the architecture of the Cell Processor and a static population size of 648 individuals, we achieved 11.6 million generations per second on one Synergetic Processing Element (SPE) core for a problem size n = 8 and 9.5 million generations per second for a problem size n = 16. Generality for a problem size n multiple of 8 is also shown. Executing six independent concurrent GA runs, one per SPE core, allows for a rough overall estimate of 70 million generations per second and 57 million generations per second for problem sizes of n = 8 and n = 16 respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信