闭环频率数据驱动PID返回

L. J. D. S. Moreira, George Acioli Juinior, P. R. Barros
{"title":"闭环频率数据驱动PID返回","authors":"L. J. D. S. Moreira, George Acioli Juinior, P. R. Barros","doi":"10.1109/CCTA.2018.8511462","DOIUrl":null,"url":null,"abstract":"This paper is about a data-driven frequency domain PID retuning from the initial controller parameters. It uses data collected from a specific closed-loop experiment to estimate frequency response points. The data-driven retuning method is applied to make a process matches with the defined reference model using a convex optimization technique that minimizes modified cost function. The proposed strategy is demonstrated in laboratory scale thermal plant based on Peltier effect, using crossover and critical frequencies estimations.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Closed-loop Frequency Data-driven PID Retuning\",\"authors\":\"L. J. D. S. Moreira, George Acioli Juinior, P. R. Barros\",\"doi\":\"10.1109/CCTA.2018.8511462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is about a data-driven frequency domain PID retuning from the initial controller parameters. It uses data collected from a specific closed-loop experiment to estimate frequency response points. The data-driven retuning method is applied to make a process matches with the defined reference model using a convex optimization technique that minimizes modified cost function. The proposed strategy is demonstrated in laboratory scale thermal plant based on Peltier effect, using crossover and critical frequencies estimations.\",\"PeriodicalId\":358360,\"journal\":{\"name\":\"2018 IEEE Conference on Control Technology and Applications (CCTA)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Control Technology and Applications (CCTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCTA.2018.8511462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了一种数据驱动的频率域PID自整定方法。它使用从特定闭环实验中收集的数据来估计频率响应点。采用数据驱动的回归方法,利用最小化修正代价函数的凸优化技术,使过程与所定义的参考模型匹配。利用交叉和临界频率估计,在实验室规模的热电厂中验证了基于珀尔帖效应的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed-loop Frequency Data-driven PID Retuning
This paper is about a data-driven frequency domain PID retuning from the initial controller parameters. It uses data collected from a specific closed-loop experiment to estimate frequency response points. The data-driven retuning method is applied to make a process matches with the defined reference model using a convex optimization technique that minimizes modified cost function. The proposed strategy is demonstrated in laboratory scale thermal plant based on Peltier effect, using crossover and critical frequencies estimations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信