{"title":"用多步深度强化学习解决单元承诺问题","authors":"Jingtao Qin, N. Yu, Yuanqi Gao","doi":"10.1109/SmartGridComm51999.2021.9632339","DOIUrl":null,"url":null,"abstract":"Solving the unit commitment (UC) problem in a computationally efficient manner is a critical issue of electricity market operations. Optimization-based methods such as heuristics, dynamic programming, and mixed-integer quadratic programming (MIQP) often yield good solutions to the UC problem. However, the computation time of optimization-based methods grows exponentially with the number of generating units, which is a major bottleneck in practice. To address this issue, we formulate the UC problem as a Markov decision process and propose a novel multi-step deep reinforcement learning (RL)-based algorithm to solve the problem. We approximate the action-value function with neural networks and design an algorithm to determine the feasible action space. Numerical studies on a 5-generator test case show that our proposed algorithm significantly outperforms the deep Q-learning and yields similar level of performance as that of MIQP-based optimization in terms of optimality. The computation time of our proposed algorithm is much shorter than that of MIQP-based optimization methods.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Solving Unit Commitment Problems with Multi-step Deep Reinforcement Learning\",\"authors\":\"Jingtao Qin, N. Yu, Yuanqi Gao\",\"doi\":\"10.1109/SmartGridComm51999.2021.9632339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving the unit commitment (UC) problem in a computationally efficient manner is a critical issue of electricity market operations. Optimization-based methods such as heuristics, dynamic programming, and mixed-integer quadratic programming (MIQP) often yield good solutions to the UC problem. However, the computation time of optimization-based methods grows exponentially with the number of generating units, which is a major bottleneck in practice. To address this issue, we formulate the UC problem as a Markov decision process and propose a novel multi-step deep reinforcement learning (RL)-based algorithm to solve the problem. We approximate the action-value function with neural networks and design an algorithm to determine the feasible action space. Numerical studies on a 5-generator test case show that our proposed algorithm significantly outperforms the deep Q-learning and yields similar level of performance as that of MIQP-based optimization in terms of optimality. The computation time of our proposed algorithm is much shorter than that of MIQP-based optimization methods.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9632339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving Unit Commitment Problems with Multi-step Deep Reinforcement Learning
Solving the unit commitment (UC) problem in a computationally efficient manner is a critical issue of electricity market operations. Optimization-based methods such as heuristics, dynamic programming, and mixed-integer quadratic programming (MIQP) often yield good solutions to the UC problem. However, the computation time of optimization-based methods grows exponentially with the number of generating units, which is a major bottleneck in practice. To address this issue, we formulate the UC problem as a Markov decision process and propose a novel multi-step deep reinforcement learning (RL)-based algorithm to solve the problem. We approximate the action-value function with neural networks and design an algorithm to determine the feasible action space. Numerical studies on a 5-generator test case show that our proposed algorithm significantly outperforms the deep Q-learning and yields similar level of performance as that of MIQP-based optimization in terms of optimality. The computation time of our proposed algorithm is much shorter than that of MIQP-based optimization methods.