越简单越好?基于词典的集成情感分类打败了监督方法

Lukasz Augustyniak, Tomasz Kajdanowicz, Piotr Szymański, W. Tuliglowicz, Przemyslaw Kazienko, R. Alhajj, B. Szymanski
{"title":"越简单越好?基于词典的集成情感分类打败了监督方法","authors":"Lukasz Augustyniak, Tomasz Kajdanowicz, Piotr Szymański, W. Tuliglowicz, Przemyslaw Kazienko, R. Alhajj, B. Szymanski","doi":"10.1109/ASONAM.2014.6921696","DOIUrl":null,"url":null,"abstract":"It has been shown in this paper that simplistic Bag of Words (BoW) lexicon methods for sentiment polarity assignment with ensemble classifiers are much faster than a supervised approach to sentiment classification while yielding similar accuracy. BoW methods also proved to be efficient and fast across all examined datasets. Moreover, a new approach to lexicon extraction that can be successfully used for sentiment polarity assignment is presented in the paper. It has been shown that accuracy obtained from such lexicons outperforms other lexicon based approaches.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Simpler is better? Lexicon-based ensemble sentiment classification beats supervised methods\",\"authors\":\"Lukasz Augustyniak, Tomasz Kajdanowicz, Piotr Szymański, W. Tuliglowicz, Przemyslaw Kazienko, R. Alhajj, B. Szymanski\",\"doi\":\"10.1109/ASONAM.2014.6921696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been shown in this paper that simplistic Bag of Words (BoW) lexicon methods for sentiment polarity assignment with ensemble classifiers are much faster than a supervised approach to sentiment classification while yielding similar accuracy. BoW methods also proved to be efficient and fast across all examined datasets. Moreover, a new approach to lexicon extraction that can be successfully used for sentiment polarity assignment is presented in the paper. It has been shown that accuracy obtained from such lexicons outperforms other lexicon based approaches.\",\"PeriodicalId\":143584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM.2014.6921696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文表明,使用集成分类器进行情感极性分配的简化词袋(BoW)词典方法比监督情感分类方法要快得多,同时产生相似的准确性。在所有被检查的数据集上,BoW方法也被证明是高效和快速的。此外,本文还提出了一种新的词汇提取方法,可以成功地用于情感极性分配。事实证明,从这些词典中获得的准确性优于其他基于词典的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simpler is better? Lexicon-based ensemble sentiment classification beats supervised methods
It has been shown in this paper that simplistic Bag of Words (BoW) lexicon methods for sentiment polarity assignment with ensemble classifiers are much faster than a supervised approach to sentiment classification while yielding similar accuracy. BoW methods also proved to be efficient and fast across all examined datasets. Moreover, a new approach to lexicon extraction that can be successfully used for sentiment polarity assignment is presented in the paper. It has been shown that accuracy obtained from such lexicons outperforms other lexicon based approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信