{"title":"基于模糊聚类-四分位数算法的光伏异常数据清理","authors":"Yidong Li, Danyun Li","doi":"10.1109/ICPS58381.2023.10128026","DOIUrl":null,"url":null,"abstract":"The irradiance-power curve is an important basis for examining the operating status of photovoltaic power stations. In the actual operation process, sensor failure, abnormal communication and equipment damage will bring a large number of abnormal values to the output data of photovoltaic power plants. It will have a significant impact on a variety of applications based on photovoltaic output data. This paper analyzes the typical outliers on the irradiance-power curve and proposes a photovoltaic output data cleaning method based on fuzzy clustering algorithm and quartile algorithm. By comparing with the quartile method, it is proved that this method can effectively identify abnormal data when there are a large number of outliers in the photovoltaic output data.","PeriodicalId":426122,"journal":{"name":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photovoltaic abnormal data cleaning based on fuzzy clustering-quartile algorithm\",\"authors\":\"Yidong Li, Danyun Li\",\"doi\":\"10.1109/ICPS58381.2023.10128026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The irradiance-power curve is an important basis for examining the operating status of photovoltaic power stations. In the actual operation process, sensor failure, abnormal communication and equipment damage will bring a large number of abnormal values to the output data of photovoltaic power plants. It will have a significant impact on a variety of applications based on photovoltaic output data. This paper analyzes the typical outliers on the irradiance-power curve and proposes a photovoltaic output data cleaning method based on fuzzy clustering algorithm and quartile algorithm. By comparing with the quartile method, it is proved that this method can effectively identify abnormal data when there are a large number of outliers in the photovoltaic output data.\",\"PeriodicalId\":426122,\"journal\":{\"name\":\"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPS58381.2023.10128026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS58381.2023.10128026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photovoltaic abnormal data cleaning based on fuzzy clustering-quartile algorithm
The irradiance-power curve is an important basis for examining the operating status of photovoltaic power stations. In the actual operation process, sensor failure, abnormal communication and equipment damage will bring a large number of abnormal values to the output data of photovoltaic power plants. It will have a significant impact on a variety of applications based on photovoltaic output data. This paper analyzes the typical outliers on the irradiance-power curve and proposes a photovoltaic output data cleaning method based on fuzzy clustering algorithm and quartile algorithm. By comparing with the quartile method, it is proved that this method can effectively identify abnormal data when there are a large number of outliers in the photovoltaic output data.